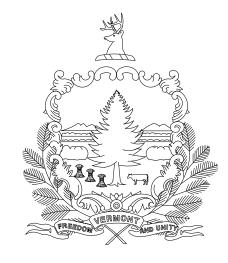
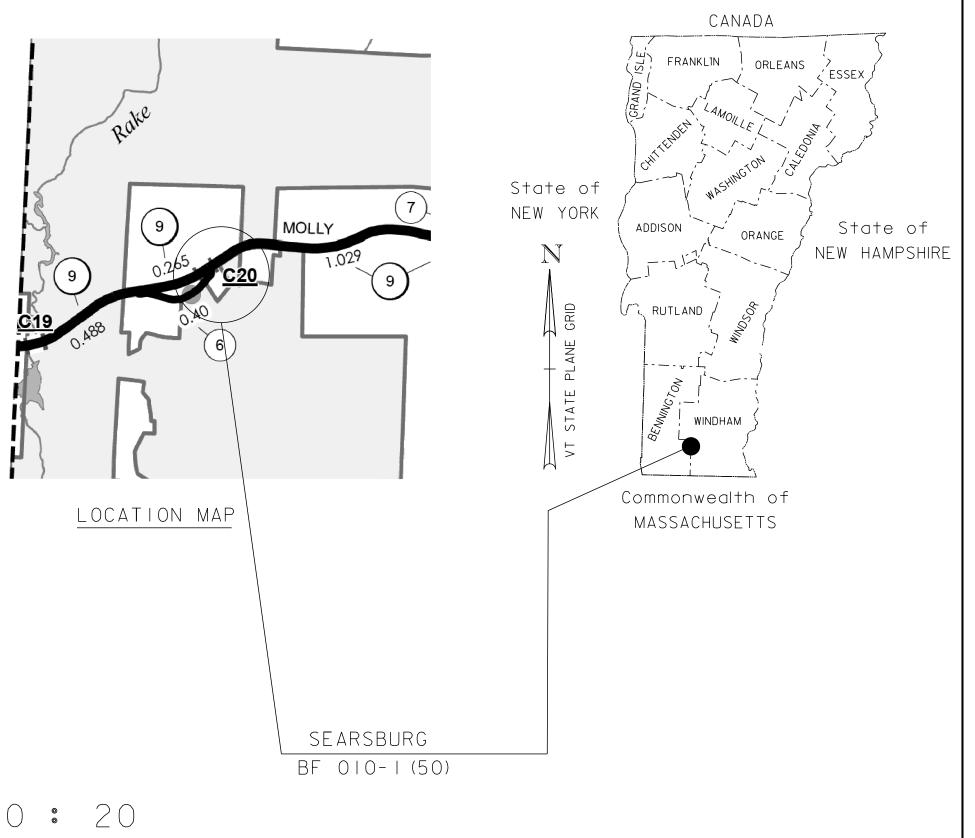

REVIEWER NOTES

- I. TWO LANES OF TRAFFIC WILL BE MAINTAINED AT ALL TIMES. ONLY SHORT-TERM DURATION LANE CLOSURES WITH FLAGGERS WILL BE ALLOWED TO ASSIST CONSTRUCTION OPERATIONS DURING DAYTIME CONSTRUCTION HOURS. THE BRIDGE WILL BE CONSTRUCTED IN PHASES.
- 2. IN ORDER TO MAINTAIN THE EXISTING ROADWAY ALIGNMENT (WHICH MINIMIZES THE PROJECT LENGTH) AND PROVIDE 24 FEET MINIMUM ROADWAY WIDTH DURING PHASED CONSTRUCTION, A TEMPORARY WIDENED SHOULDER/EMBANKMENT IS REQUIRED DURING PHASE I.
- 3. IT IS ANTICIPATED THAT CHANNEL RIGHTS WILL BE NECESSARY FOR THIS PROJECT. THE EXTENT OF RIGHTS REQUIRED WILL NOT BE KNOWN UNTIL FINAL DESIGN.
- 4. THERE ARE NO EXISTING OVERHEAD UTILITIES WITHIN THE PROJECT AREA.
- 5. A SIMPLIFIED PAVEMENT DESIGN WAS DONE FOR THIS PROJECT.
- 6. STRUCTURE TYPE IS A SINGLE SPAN STEEL GIRDER BRIDGE WITH INTEGRAL ABUTMENTS.
- 7. THE PROPOSED DESIGN WITHIN THE PROJECT LIMITS MEETS AASHTO SUPERELEVATION REQUIREMENTS. THE SUPERELEVATION WILL TRANSITION TO MATCH EXISTING IN THE APPROACHES. THE LIMITS OF CONSTRUCTION WOULD NEED TO BE EXTENDED SIGNIFICANTLY TO MEET AASHTO.
- 8. ORIGINAL BORINGS DONE IN 2015 ARE SHOWN BUT DID NOT GO TO DEPTH OF BEDROCK. ADDITIONAL BORINGS HAVE BEEN REQUESTED TO LOCATE BEDROCK TO AID IN DESIGN OF INTEGRAL ABUTMENTS.


LENGTH OF ROADWAY: LENGTH OF PROJECT:



CONSTRUCTION IS TO BE CARRIED ON IN ACCORDANCE WITH THESE PLANS AND THE STANDARD SPECIFICATIONS FOR CONSTRUCTION DATED 2018, AS APPROVED BY THE FEDERAL HIGHWAY ADMINISTRATION ON APRIL 13, 2018 FOR USE ON THIS PROJECT, INCLUDING ALL SUBSEQUENT REVISIONS AND SUCH REVISED SPECIFICATIONS AND SPECIAL PROVISIONS AS ARE INCORPORATED IN THESE PLANS.

QUALITY ASSURANCE PROGRAM : LEVEL SURVEYED BY : VTRANS SURVEYED DATE : 07/08/2014 DATUM VERTICAL NAVD88 HORIZONTAL NAVD83 (2011)

STATE OF VERMONT AGENCY OF TRANSPORTATION

PROPOSED IMPROVEMENT

BRIDGE PROJECT

TOWN OF SEARSBURG COUNTY OF BENNINGTON

ROUTE NO : VT ROUTE 9, RURAL PRINCIPAL ARTERIAL, BRIDGE NO : 20

PROJECT LOCATION: APPROXIMATELY 1.208 MILES WEST OF THE INTERSECTION WITH VT ROUTE 8 AND EXTENDING EASTERLY APPROXIMATELY 0.047 MILE.

VOODFORD

PROJECT DESCRIPTION: REPLACEMENT OF EXISTING CULVERT WITH A SINGLE SPAN STRUCTURE WITH RELATED APPROACH ROADWAY AND CHANNEL WORK.

LENGTH OF STRUCTURE:

PRELIMINARY PLANS 17-OCTOBER-2018

DIRECTOR OF PROJECT DELIVERY

GM2 Associates, Inc. 197 Loudon Road, Suite 310 Concord, NH 03301

Tel: 603-856-7854 Fax: 603-856-7855

APPROVED	DATE						
PROJECT MANAGER :	N. WARK						
PROJECT NAME : Project number :							
SHEET I OF 32	SHEETS						

STATE OF VERMONT AGENCY OF TRANSPORTATION

EPSC DETAILS

31-32

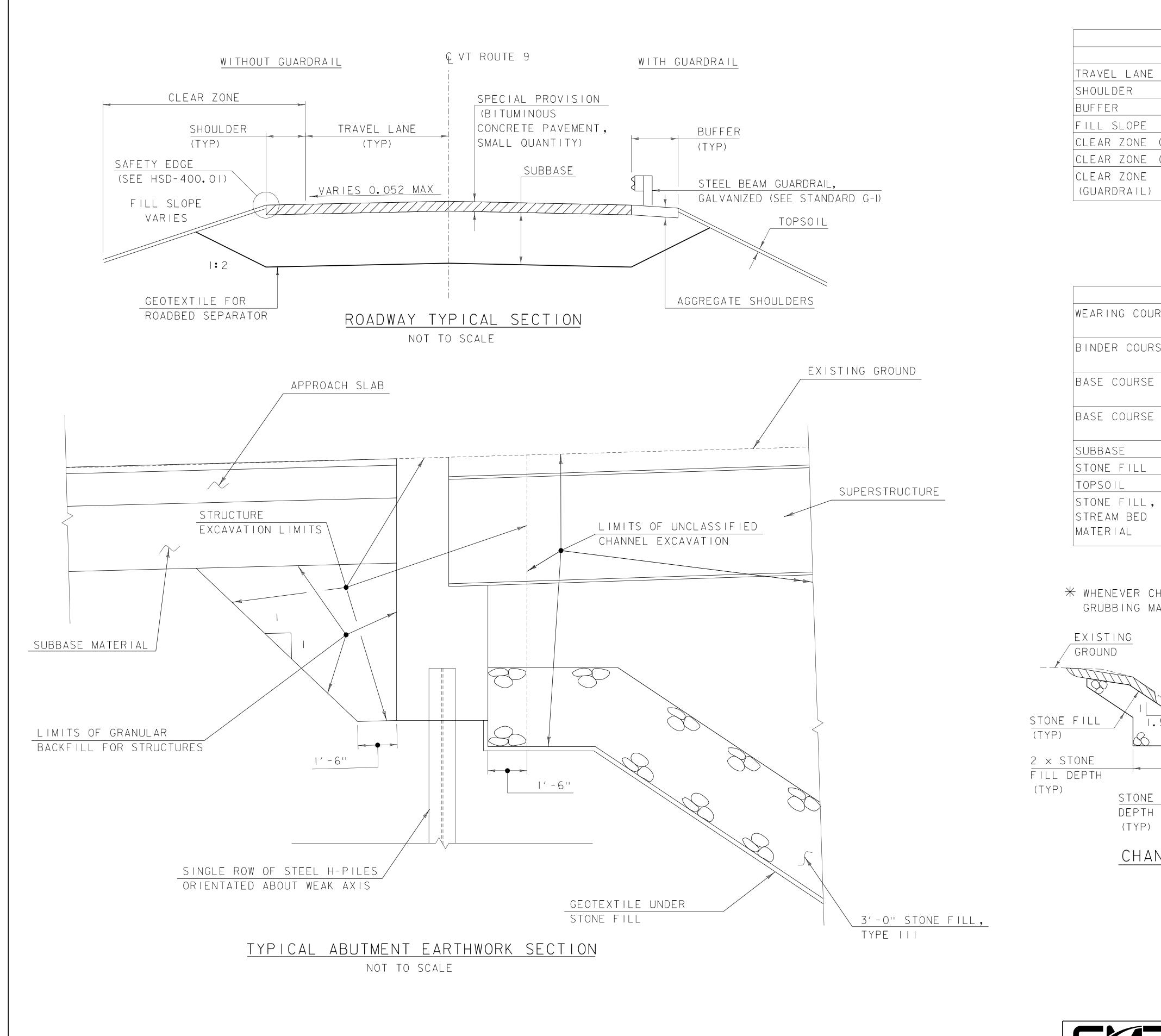
INDEX OF SHEETS

	PLAN SHEETS		
1	TITLE SHEET		SLOPE GR
2	PRELIMINARY INFORMATION SHEET	E-193	PAVEMEN
3-4	TYPICAL SECTIONS	G-1	STEEL BE/
5-6	QUANTITY SHEET	G-19	GENERIC (
7	LEGEND SHEET	S-363	THRIE BEA
8	TIE SHEET	S-364A	BRIDGE RA
9	LAYOUT SHEET	S-364B	GUARDRA
10	VT ROUTE 9 PROFILE & BANKING DIAGRAM	S-364C	GUARDRA
11	CHANNEL PROFILE	S-364D	GUARDRA
12	BORING INFORMATION SHEET	T-1	TRAFFIC C
13-14	BORING LOGS	T-10	CONVENTI
15	RAIL LAYOUT SHEET	T-17	TRAFFIC C
16	PLAN & ELEVATION	T-28	CONSTRU
17	ABUTMENT 1 PILE CAP PLAN & ELEVATION	T-29	CONSTRU
18	ABUTMENT 2 PILE CAP PLAN & ELEVATION	Т-30	CONSTRU
19-22	VT ROUTE 9 CROSS SECTIONS	T-31	CONSTRU
23-26	CHANNEL SECTIONS	T-35	CONSTRU
27	VT ROUTE 9 PHASE CONSTRUCTION SECTIONS	T-36	CONSTRU
28	EPSC NARRATIVE	T-40	DELINEAT
29	EXISTING CONSTRUCTION PLAN	T-42	BRIDGE NI
30	EPSC CONSTRUCTION PLAN	T-45	SQUARE T

STRUCTURES DETAIL SHEETS

SD-501.00	CONCRETE DETAILS AND NOTES	2/9/2012
SD-502.00	CONCRETE DETAILS AND NOTES	10/10/2012
SD-516.10	BRIDGE JOINT ASPHALTIC PLUG	8/29/2011
SD-601.00	STRUCTURAL STEEL DETAILS AND NOTES	6/4/2010
SD-602.00	STRUCTURAL STEEL PLATE GIRDER DETAILS AND NOTES	5/2/2011

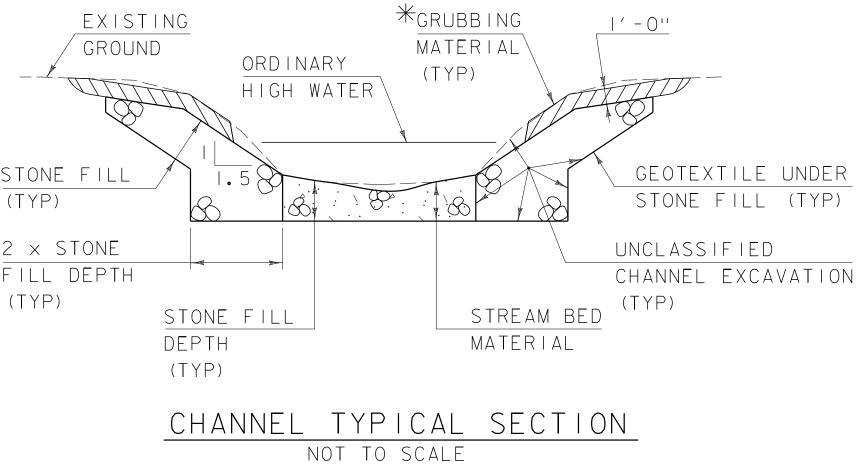
HIGHWAY SAFETY AND DESIGN DETAIL


HSD-213.01 MILLED RUMBLE STRIPS (SHOULDER)	2/27/2017
HSD-213.02 MILLED RUMBLE STRIPS (CENTERLINE)	9/28/2017
HSD-400.01 SAFETY EDGE DETAIL	1/5/2018
HSD-621.01 POST AND BLOCKOUT DETAILS FOR STEEL BEAM GUARDRAIL,	6/9/2015
GALVANIZED	
HSD-621.06 GUARDRAIL TERMINAL LABEL DETAILS	2/27/2017

			Α					
YEAR	ADT	DHV	% D	% T	ADTT	20 year ESAL for flexible pavement from	2017 t	io 20
2017	3200	490	54	15.2	540	40 year ESAL for flexible pavement from	2017 t	io 20
2037	3400	520	54	19.9	750	Design Speed : 50 mph		

PRELIMINARY INFORMATION SHEET (BRIDGE) STANDARDS LIST GRADING, EMBANKMENTS, MUCK 6/1/1994 8/18/1995 ENT MARKING DETAILS BEAM GUARDRAIL DETAILS (POST, DELINEATOR, TYPICALS) 3/10/2017 C GRADING PLANS FOR GUARDRAIL END TERMINALS 11/15/2002 EAM TO STANDARD STEEL BEAM TRANSITION SECTION 2/2/2017 2/2/2017 RAILING, GALVANIZED 3 RAIL BOX BEAM 2/2/2017 RAIL APPROACH SECTION, GALVANIZED 3 RAIL BOX BEAM 2/2/2017 RAIL APPROACH SECTION, GALVANIZED 3 RAIL BOX BEAM 2/2/2017 RAIL APPROACH SECTION, GALVANIZED 3 RAIL BOX BEAM CONTROL GENERAL NOTES 4/25/2016 NTIONAL ROADS CONSTRUCTION APPROACH SIGNING 8/6/2012 CONTROL MISCELLANEOUS DETAILS 8/6/2012 RUCTION SIGN DETAILS 8/6/2012 8/6/2012 RUCTION SIGN DETAILS 8/6/2012 RUCTION SIGN DETAILS RUCTION SIGN DETAILS 8/6/2012 8/6/2012 RUCTION ZONE LONGITUDINAL DROP-OFFS RUCTION ZONE LONGITUDINAL DROP-OFFS FOR PAVING 8/6/2012 ATORS AND MILEPOSTS 1/2/2013 NUMBER PLAQUE 4/9/2014 SQUARE TUBE SIGN POST AND ANCHOR 1/2/2013 _____ LRFR LOAD RATING FACTORS TRUCK LOADING LEVELS H-20 HL-93 3S2 6 AXLE 3A. STR. 44 TONNAGE 20 36 36 66 30 INVENTORY POSTING OPERATING COMMENTS: AS BUILT "REBAR" DETAIL LEVEL I LEVEL II LEVEL III TYPE: TYPE: TYPE: GRADE: GRADE: GRADE: 2037 : 3.857.000 2057 : 8.218.000

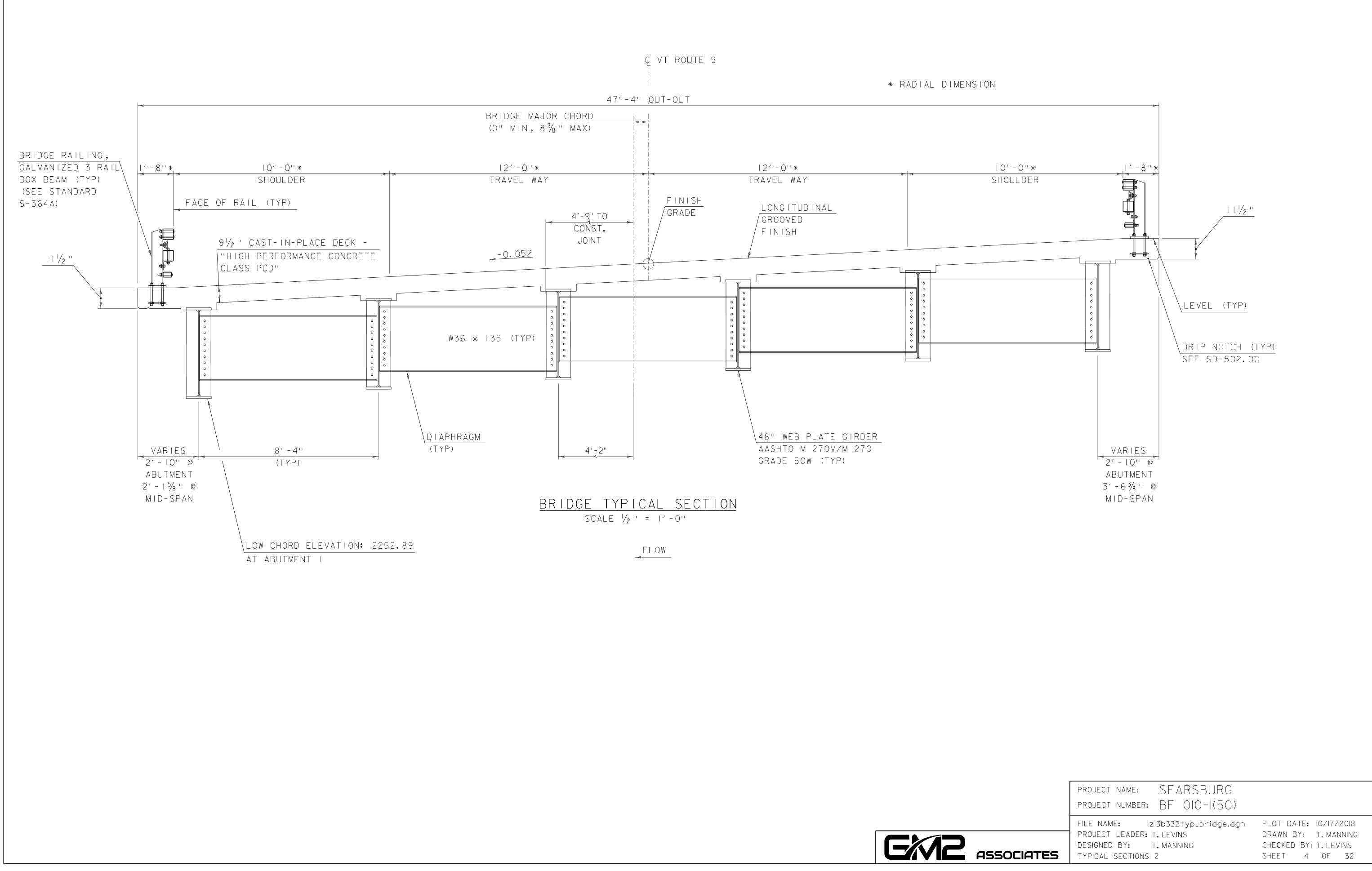
		LRFD
FINAL HYDRA	ULIC REPORT	
	TRAFFIC MAINTENANCI 1. PHASED CONSTRUCTION: MAINTAIN TWO-WAY TRA	
	STRUCTURE 2. TRAFFIC SIGNALS ARE NOT NECESSARY. 3. SIDEWALKS ARE NOT NECESSARY	
	DESIGN VALUES	S
	1. DESIGN LIVE LOAD 2. FUTURE PAVEMENT	HL-93 dp: 2.5 INCH
		L: 103.00 FT
	 MIN. MID-SPAN POS. CAMBER @ RELEASE (PREST PRESTRESSING STRAND PRESTRESSED CONCRETE STRENGTH 	$\begin{array}{c c} \hline \text{RESSED UNITS} & \Delta : & \\ \hline fy: & \\ \hline f'c: & \end{array}$
	 PRESTRESSED CONCRETE RELEASE STRENGTH CONCRETE, HIGH PERFORMANCE CLASS AA 	f'ci: f'c: 4.0 KSI
	9. CONCRETE, HIGH PERFORMANCE CLASS A 10. CONCRETE, HIGH PERFORMANCE CLASS B	f'c: 4.0 KSI f'c: 3.5 KSI
	 CONCRETE, CLASS C REINFORCING STEEL STRUCTURAL STEEL AASHTO M270 (WEATHERING 	
	14. NOMINAL BEARING RESISTANCE OF SOIL	<i>qn</i> :KSF
	 SOIL BEARING RESISTANCE FACTOR (REFER TO A NOMINAL BEARING RESISTANCE OF ROCK 	ASHTO LRFD) ∲: 0.45 q n: KSF
A. STR. 5A. SEMI	 17. ROCK BEARING RESISTANCE FACTOR (REFER TO) 18. PILE RESISTANCE FACTOR 	AASHTO LRFD) φ: φ:
34.5 38	19. LATERAL PILE DEFLECTION 20. BASIC WIND SPEED	Δ: INCH V3s:
	21. MINIMUM GROUND SNOW LOAD 22. SEISMIC DATA PGA:	pg: Ss:
I	23 24.	<u>\$1:</u>
	24 25 26.	
	PROJECT NAME: SEARSBURG	
	PROJECT NUMBER: BF 010-1(50)	PLOT DATE : 10/17/2018
	FILE NAME:z13b332pi.dgnPROJECT LEADER:T. LEVINSPROJECT DEVDEV	DRAWN BY: T. MANNING
	DESIGNED BY: T. MANNING PRELIMINARY INFORMATION SHEET	CHECKED BY:T. LEVINSSHEET 2OF 32


Version

ROAD TYPICAL INFORMATION

	LEF	T	RIC	GHT
	WIDTH	SLOPE	WIDTH	SLOPE
TRAVEL LANE	2'-0"	VARIES	12′-0''	VARIES
SHOULDER	0' - 0''	VARIES	10′-0''	VARIES
BUFFER	3′ - 7''	-0.060	3′ - 7''	-0.060
FILL SLOPE		I : I . 75		I : I . 75
CLEAR ZONE (CUT)	2'-0"		2′-0''	
CLEAR ZONE (FILL)	20'-0"		20'-0''	
CLEAR ZONE (GUARDRAIL)	4′ -0''		4′-0''	

	1	
	THICKNESS	TYPE
WEARING COURSE	/ ₂ ''	SPECIAL PROVISION (BITUMINOUS CONCRETE PAVEMENT, SMALL QUANTITY) (TYPE IVS)
BINDER COURSE	/ ₂ ''	SPECIAL PROVISION (BITUMINOUS CONCRETE PAVEMENT, SMALL QUANTITY) (TYPE IVS)
BASE COURSE #2	2 1/2 ''	SPECIAL PROVISION (BITUMINOUS CONCRETE PAVEMENT, SMALL QUANTITY) (TYPE IIS)
BASE COURSE #I	2 1/2 ''	SPECIAL PROVISION (BITUMINOUS CONCRETE PAVEMENT, SMALL QUANTITY) (TYPE IIS)
SUBBASE	39''	SUBBASE OF DENSE GRADED CRUSHED STONE
STONE FILL	3′ -0''	TYPE III
TOPSOIL	4 ''	TOPSOIL
STONE FILL, Stream bed Material	3′ - 0''	SPECIAL PROVISION (E-STONE, TYPE II)



MATERIAL INFORMATION

st whenever channel slope intersects roadway subbase, GRUBBING MATERIAL SHALL BEGIN AT THE BOTTOM OF SUBBASE.

	project name: SEARSBURG	
	project number: BF 010-1(50)	
	FILE NAME: zI3b332typ.dgn	PLOT DATE: 10/17/2018
	PROJECT LEADER: T.LEVINS	DRAWN BY: T.MANNING
	DESIGNED BY: J.MERCER/T.MANNING	CHECKED BY: T.LEVINS
IATES	TYPICAL SECTIONS I	SHEET 3 OF 32

STATE OF VERMONT AGENCY OF TRANSPORTATION

SUMMARY OF ESTIMATED QUANTITIES							тот	TOTALS		DESCRIPTIONS			
				ROADWAY	EROSION CONTROL	BRIDGE	FULL C.E. ITEMS	GRAND TOTAL	FINAL	UNIT	ITEMS	ITEM NUMBE	
				1				1		LS	CLEARING AND GRUBBING, INCLUDING INDIVIDUAL TREES AND STUMPS	201.10	
				710				710		CY	COMMON EXCAVATION	203.15	
						9870		9870		CY	UNCLASSIFIED CHANNEL EXCAVATION	203.27	
				1				1		CY	TRENCH EXCAVATION OF EARTH, EXPLORATORY (N.A.B.I.)	204.22	
						640		640		CY	STRUCTURE EXCAVATION	204.25	
						145		145		CY	GRANULAR BACKFILL FOR STRUCTURES	204.30	
						1		1		LS	COFFERDAM	208.40	
				490				490		SY	COLD PLANING, BITUMINOUS PAVEMENT	210.10	
				612				612		LF	MILLED RUMBLE STRIPS	213.10	
				570				570		CY	SUBBASE OF DENSE GRADED CRUSHED STONE	301.35	
				50				50		TON	AGGREGATE SHOULDERS	402.12	
				9				9		CWT	EMULSIFIED ASPHALT	404.65	
				1				1		LU	PRICE ADJUSTMENT, ASPHALT CEMENT (N.A.B.I.)	406.50	
						158		158		CY	HIGH PERFORMANCE CONCRETE, CLASS PCD	501.37	
						222		222		CY	HIGH PERFORMANCE CONCRETE, CLASS PCS	501.38	
						1		1		LS	FURNISHING EQUIPMENT FOR DRIVING PILING	504.10	
						360		360		LF	STEEL PILING, HP 12 X 84	505.165	
						2		2		EACH	DYNAMIC PILE LOADING TEST	505.45	
						158260		158260		LB	STRUCTURAL STEEL, PLATE GIRDER	506.55	
						30570		30570		LB	REINFORCING STEEL, LEVEL I	507.11	
						4320		4320		LB	REINFORCING STEEL, LEVEL III	507.13	
						1		1		LS	SHEAR CONNECTORS (1248 - 8" x 7/8")	508.15	
						510		510		SY	LONGITUDINAL DECK GROOVING	509.10	
						45		45		GAL	WATER REPELLENT, SILANE	514.10	
						87		87		LF	BRIDGE EXPANSION JOINT, ASPHALTIC PLUG	516.10	
						87		87		LF	JOINT SEALER, HOT POURED	524.11	
						216		216		LF	BRIDGE RAILING, GALVANIZED 3 RAIL BOX BEAM	525.335	
						1		1		EACH	REMOVAL OF STRUCTURE (174 LF OF 84" CMP)	529.15	
						1280		1280		CY	STONE FILL, TYPE III	613.12	
				325				325		LF	STEEL BEAM GUARDRAIL, GALVANIZED	621.20	
				1				1		EACH	MANUFACTURED TERMINAL SECTION, TANGENT	621.51	
						4		4		EACH	GUARDRAIL APPROACH SECTION, GALVANIZED 3 RAIL BOX BEAM	621.725	
				700				700		LF	REMOVAL AND DISPOSAL OF GUARDRAIL	621.80	
				600				600		HR	UNIFORMED TRAFFIC OFFICERS	630.10	
				1200				1200		HR	FLAGGERS	630.15	
							1	1		LS	FIELD OFFICE, ENGINEERS	631.10	
				1000				1000		LS	TESTING EQUIPMENT, CONCRETE	631.16	
				1000				1000		LS	TESTING EQUIPMENT, BITUMINOUS	631.17	
										DL	FIELD OFFICE COMMUNICATIONS (N.A.B.I.)	631.26	
										LS	MOBILIZATION/DEMOBILIZATION	635.11	

QUANTITY SHEET 1

	-				
OUND		QUANTITIES	UNIT	ITEMS	
	_				
	_				
	1	1			
ſ				SEARSBURG	
	PRO	JECT NUMB	ER: [3F 010-1(50)	

STATE OF VERMONT AGENCY OF TRANSPORTATION

SUMMARY OF ESTIMATED QUANTITIES								тот	ALS	DESCRIPTIONS			
					ROADWAY	EROSION CONTROL	BRIDGE	FULL C.E. ITEMS	GRAND TOTAL	FINAL	UNIT	ITEMS	
					700				700		LF	4 INCH WHITE LINE, WATERBORNE PAINT	646.201
					700				700		LF	4 INCH YELLOW LINE, WATERBORNE PAINT	646.211
						952			952		SY	GEOTEXTILE FOR ROADBED SEPARATOR	649.11
							1490		1490		SY	GEOTEXTILE UNDER STONE FILL	649.31
						416			416		SY	GEOTEXTILE FOR SILT FENCE	649.51
						60			60		SY	GEOTEXTILE FOR FILTER CURTAIN	649.61
						40			40		LB	SEED	651.15
						40			40		LB	SEED, WINTER RYE	651.17
						330			330		LB	FERTILIZER	651.18
						2			2		TON	AGRICULTURAL LIMESTONE	651.20
						60			60		СҮ	TOPSOIL	651.35
					1810				1810		SY	GRUBBING MATERIAL	651.40
						1			1		LS	EPSC PLAN	653.01
						260			260		HR	MONITORING EPSC PLAN	653.02
						1			1		LU	MAINTENANCE OF EPSC PLAN (N.A.B.I.)	653.03
						2			2		TON	HAYMULCH	653.10
						2920			2920		SY	ROLLED EROSION CONTROL PRODUCT, TYPE II	653.21
						89			89		СҮ	STABILIZED CONSTRUCTION ENTRANCE	653.35
						935			935		LF	PROJECT DEMARCATION FENCE	653.55
					1				1		SF	TRAFFIC SIGNS, TYPE A	675.20
					16				16		LF	SQUARE TUBE SIGN POST AND ANCHOR	675.341
					1				1		EACH	DELINEATOR WITH STEEL POST	676.10
									1		LU	PRICE ADJUSTMENT, FUEL (N.A.B.I.)	690.50
							210						
							310		310		CY	SPECIAL PROVISION (E-STONE TYPE E2)	900.608
							42770		42770		LF	SPECIAL PROVISION (REINFORCING BAR, GFRP #6)	900.640
					1				1		LS	SPECIAL PROVISION (TRAFFIC CONTROL, ALL-INCLUSIVE)	900.645
					2				2		LU	SPECIAL PROVISION (MAT DENSITY PAY ADJUSTMENT, SMALL QUANTITY) (N.A.B.I.) (MIXTURE PAY ADJUSTMENT) (N.A.B.I.)	
					330				330		TON	SPECIAL PROVISION (BITUMINOUS CONCRETE PAVEMENT, SMALL QUANTITY)	900.680
													-
													-

QUANTITY SHEET 2

DETAILED SUMMARY OF QUANTITIES				
ROUND	QUANTITIES	UNIT		ITEMS
Γ	PROJECT NAM	E: SEAR	SBURG	
		ber: BF O		
Γ	FILE NAME:			PLOT DATE: 10/17/2018

COMMON TOPOGRAPHIC POINT SYMBOLS

SYMBOL	Ogy leg	END NOTE		POINT	CODE
THE S	YMBOLOGY	ON THIS SHEET IS INT	ENDED TO COVER		APL
		ENTIONAL SYMBOLOGY.			BM
		NG & PROPOSED FEAT			BND
		OMBINATION WITH PROJE			СВ
		ROJECT PLAN SHEETS.		<u>ф</u>	СОМВ
		THE BASICS. SYMBOLOG DTATIONS AND NOTES			DITHR
		Y AS NEEDED.	SHOULD DL	<u>г</u>	EL
UULD	IO OLANI				FPOLE
				\odot	GASFIL
				\odot	GP
				×	GSO
				o	GUY
				\odot	GUYW
				\Join	GV
				S	H
					HCTRL
				\bigtriangleup	HVCTRL
				Ŷ	HYD
				۲	IP
				©	IPIPE
				¢	
				, P	MB
				0	MH
					MM
				Θ	PM
					РМК
				\odot	POST
					RRSIG
				 ↔ 	RRSL
					S
				···· ≣ ···/ ی	SAT
				Ê	SHRUB
					SIGN
				A	STUMP
				-0-	TEL
				\odot	TIE
				0.0	TSIGN
				\downarrow	VCTRL
R.O.W.		IATIONS (CODES)	& SYMBOLS	0	WELL
$\square \bullet \cup \bullet W \bullet$	ADDREV	TATIONS (CODES)	& STMDULS	M	WSO
POINT	CODE	DESCRIPTION			
	СН	CHANNEL EASEMENT		ТИЕСЕ	ARE COMM
	CONST	CONSTRUCTION EASEM	ENT		KISTING FEA
	CUL	CULVERT EASEMENT			RES WITH H
	D&C	DISCONNECT & CONNE	СТ		ROPOSED A
	DIT	DITCH EASEMENT			NULUSED A
	DR	DRAINAGE EASEMENT			
	DRIVE	DRIVEWAY EASEMENT		PROPO)SED GEO
	EC	EROSION CONTROL			

R.O.W. AE

GENERAL INFORMATION

POINT	CODE	DESCRIPTION	M	WSO WATER SHUT OFF
	СН	CHANNEL EASEMENT		
	CONST	CONSTRUCTION EASEMENT		ARE COMMON VAOT SURVEY POINT SYMBOLS
	CUL	CULVERT EASEMENT		STING FEATURES, ALSO USED FOR PROPOSED
	D&C	DISCONNECT & CONNECT		ES WITH HEAVIER LINEWEIGHT, IN COMBINATION
	DIT	DITCH EASEMENT		OPOSED ANNOTATION.
	DR	DRAINAGE EASEMENT		
	DRIVE	DRIVEWAY EASEMENT	PROPOS	SED GEOMETRY CODES
	EC	EROSION CONTROL	CODE	DESCRIPTION
	ΗWΥ	HIGHWAY EASEMENT		
	1&M	INSTALL & MAINTAIN EASEMENT	PC	POINT OF CURVATURE
	LAND	LANDSCAPE EASEMENT	PI	POINT OF INTERSECTION
	R&RES	REMOVE & RESET	CC	CENTER OF CURVE
	R&REP	REMOVE & REPLACE	PT	POINT OF TANGENCY
	R.T.&I.	RIGHTS, TITLE, AND INTEREST	PCC	POINT OF COMPOUND CURVE
	SR	SLOPE RIGHT	PRC	POINT OF REVERSE CURVE
	UE	UTILITY EASEMENT	POB	POINT OF BEGINNING
	(P)	PERMANENT EASEMENT	POE	POINT OF ENDING
	(])	TEMPORARY EASEMENT	STA	STATION PREFIX
	BNDNS	BOUND SET	АН	AHEAD STATION SUFFIX
		BOUND JET BOUND TO BE SET	BK	BACK STATION SUFFIX
	BNDNS		D	CURVE DEGREE OF (IOOFT)
		IRON PIN SET	R	CURVE RADUIS OF
\bigcirc	IPNS	IRON PIN TO BE SET	T T	CURVE TANGENT LENGTH
	CALC	EXISTING ROW POINT	L	CURVE LENGTH OF
	PROW	PROPOSED ROW POINT	E	CURVE EXTERNAL DISTANCE
LLEN	GTH	LENGTH CARRIED ON NEXT SHEET		

DESCRIPTION BOUND APPARENT LOCATION BENCHMARK BOUND CATCH BASIN COMBINATION POLE DROP INLET THROATED DNC ELECTRIC POWER POLE FLAGPOLE gas filler GUIDE POST GAS SHUT OFF GUY POLE GUY WIRE GATE VALUE TREE HARDWOOD CONTROL HORIZONTAL CONTROL HORIZ. & VERTICAL HYDRANT IRON PIN IRON PIPE LIGHT - STREET OR YARD MAILBOX MANHOLE (MH) MILE MARKER PARKING METER PROJECT MARKER POST STONE/WOOD RAILROAD SIGNAL RAILROAD SWITCH LEVER TREE SOFTWOOD SATELLITE DISH Shrub SIGN STUMP TELEPHONE POLE TIE SIGN W/DOUBLE POST CONTROL VERTICAL WELL WATER SHUT OFF

UTILITY SYMBOLOGY

UNDERGROUND UTILITIES
<i>— ugu — · · — · · –</i> Utility (generic-unknown)
<i>— UT — TELEPHONE</i>
— s — $\cdot \cdot$ — \cdot - Sanitary Sewer (Septic)
ABOVE GROUND UTILITIES (AERIAL)
<i>— Agu — Utility (generic-unknown)</i>
— T — ·· — · TELEPHONE
— e — ·· – · · Electric
— C — ·· – · CABLE (TV)
— EC — ·· – · ELECTRIC+CABLE
— ET — ·· — · · - ELECTRIC+TELEPHONE
— AER E&T — ·· — · ELECTRIC+TELEPHONE
— CT — ·· — · · CABLE+TELEPHONE
— ECT — ·· — · · - ELECTRIC+CABLE+TELEP.
PROJECT CONSTRUCTION SYMBOLOGY
PROJECT DESIGN & LAYOUT SYMBOLOGY
— — cz — — Clear zone

PROJECT CONSTRUCTION FEATURES

Z	<u> </u>		<u> </u>		≙	£	TOP OF CUT S
(Э—		0		⊖—	€	D TOE OF FILL S
	80	80	80	80	80	80	STONE FILL
							BOTTOM OF DI
							CULVERT PROF
							STRUCTURE SL
	PDF			—PC) F		PROJECT DEMA
	ΒF	~~	-××	— В F			BARRIER FENCE
$\overline{<}$	XXX		XXXX	XXXX	××××	XXXX	TREE PROTECT
	//.		///	///	////	///	STRIPING LINE
	\frown	\checkmark	\checkmark	\checkmark	\smile	\checkmark	SHEET PILES

CUT SLOPE FILL SLOPE FILL of Ditch 🎚 PROPOSED URE SUBSURFACE DEMARCATION FENCE FENCE ROTECTION ZONE (TPZ) G LINE REMOVAL

CONVENTIONAL BOUNDARY SYMBOLOGY

BOUNDARY LINES	- TOWN BO
COUNTY LINE	- COUNTY I
STATE LINE	STATE BO
— <i>///</i> — — <i>///</i>	• PROPOSED
	• PROPOSED
+++	- STATE RO
	- STATE RO
	– TOWN RO
<u> </u>	PERMANE
	- TEMPORA
+ + +	– SURVEY L
$\frac{P}{L}$ $\frac{P}{L}$ $\frac{P}{L}$ $\frac{P}{L}$	- PROPERT
A SR SR SR	⊖ SLOPE RI
6f 6f	- 6F prope
4f 4f	– 4F prope
HAZ HAZ	– HAZARDOI

TOWN BOUNDARY LINE
COUNTY BOUNDARY LINE
STATE BOUNDARY LINE
PROPOSED STATE R.O.W. (LIMITED ACCESS)
PROPOSED STATE R.O.W.
STATE ROW (LIMITED ACCESS)
STATE ROW
TOWN ROW
PERMANENT EASEMENT LINE (P)
TEMPORARY EASEMENT LINE (T)
SURVEY LINE
PROPERTY LINE (P/L)
SLOPE RIGHTS
6F PROPERTY BOUNDARY
4F PROPERTY BOUNDARY
HAZARDOUS WASTE

EPSC LAYOUT PLAN SYMBOLOGY

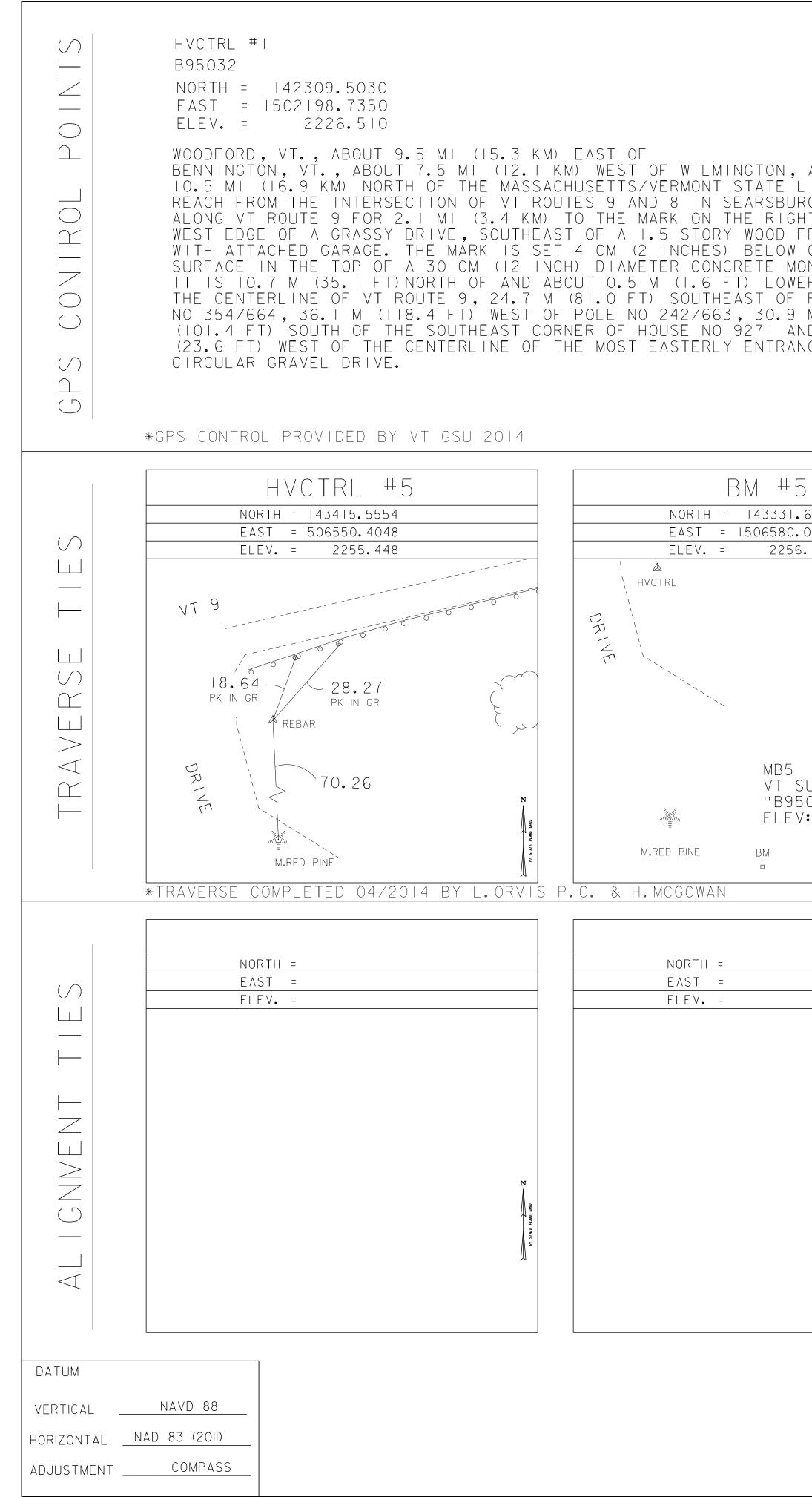
<u>epsc measures</u>)
	FILTER CURTAIN
	SILT FENCE
	SILT FENCE WOVEN WIRE
▶ ─ ▶ ─ ▶─	CHECK DAM
	DISTURBED AREAS Requiring re-vegetation
	EROSION MATTING
SEE EPSC DETAIL	SHEETS FOR ADDITIONAL SYMBOLOGY

ENVIRONMENTAL RESOURCES

	WFTLAND BOUNDARY
• •	
	riparian buffer zone
·	WETLAND BUFFER ZONE
	SOIL TYPE BOUNDARY
——————————————————————————————————————	THREATENED & ENDANGERED SPECIES
HAZ —— HAZ ——	HAZARDOUS WASTE AREA
——————————————————————————————————————	AGRICULTURAL LAND
——————————————————————————————————————	FISH & WILDLIFE HABITAT
	FLOOD PLAIN
—OHW	ORDINARY HIGH WATER (OHW)
—•—•	STORM WATER
	USDA FOREST SERVICE LANDS
	WILDLIFE HABITAT SUIT/CONN
RCHEOLOGICAL	& HISTORIC

А

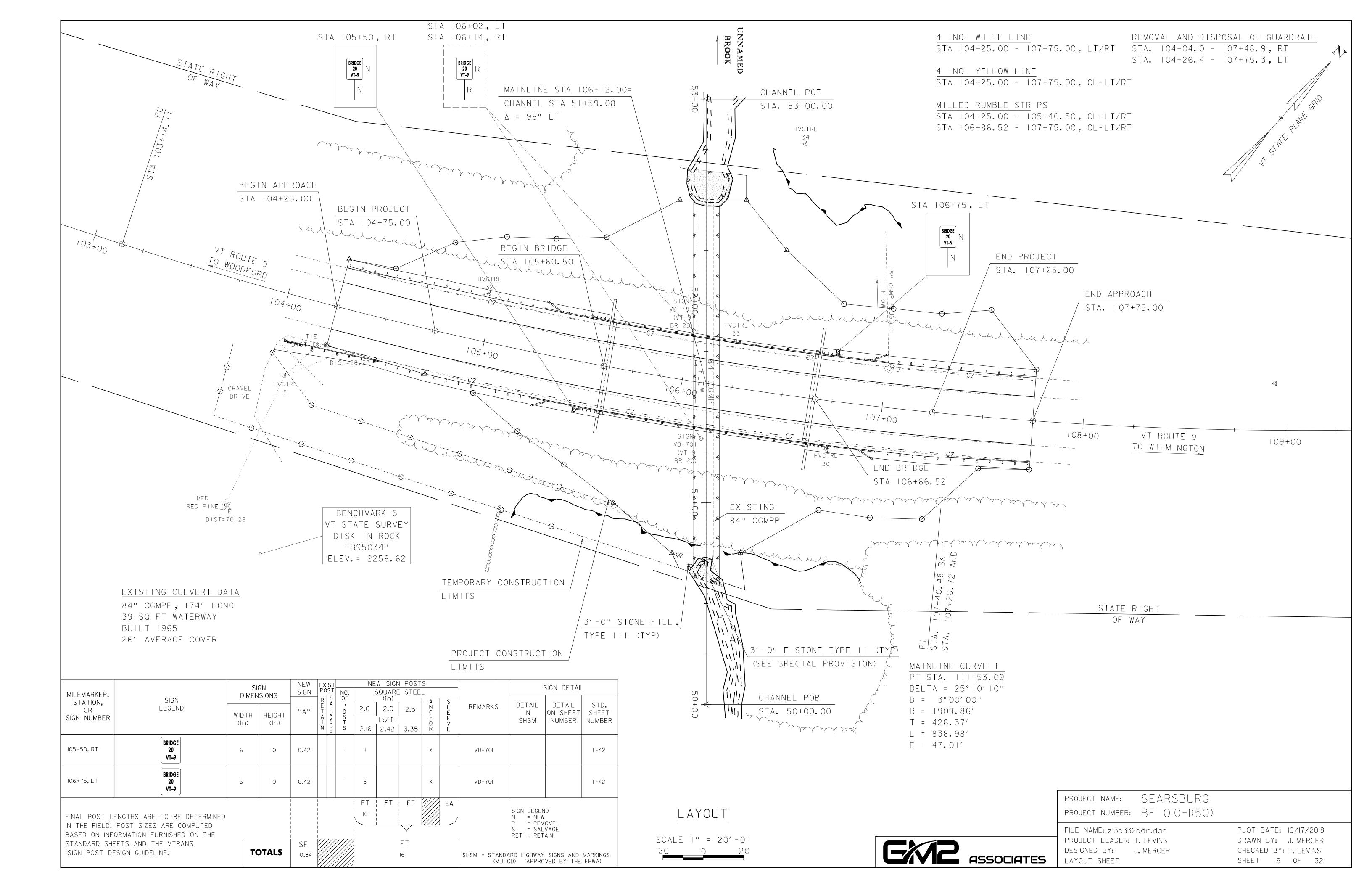
———— ARCH ———
— HISTORIC DIST —
——— HISTORIC ——
(\mathbf{H})

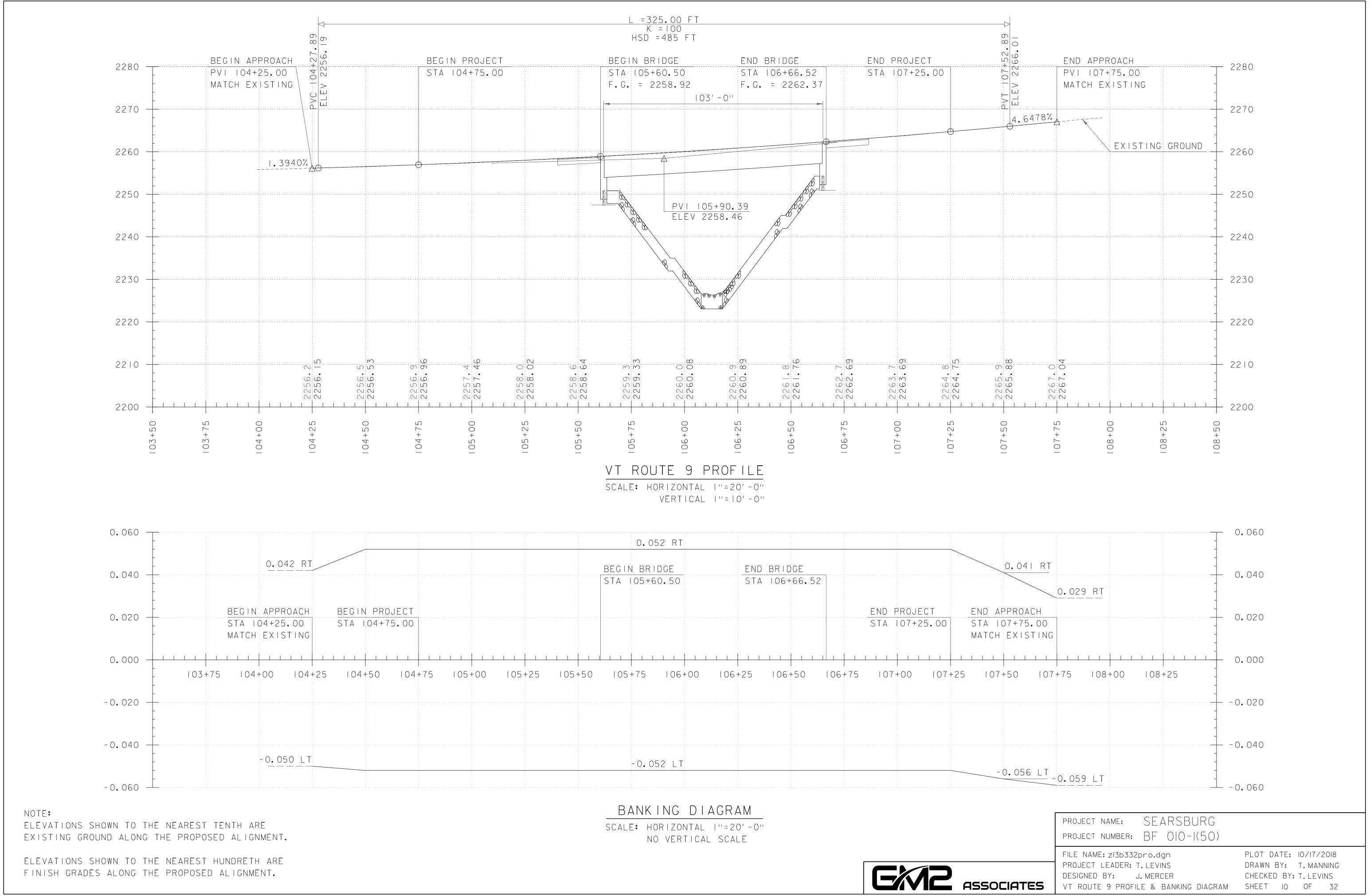

- HISTORIC DISTRICT BOUNDARY HISTORIC STRUCTURE

CONVENTIONAL TOPOGRAPHIC SYMBOLOGY

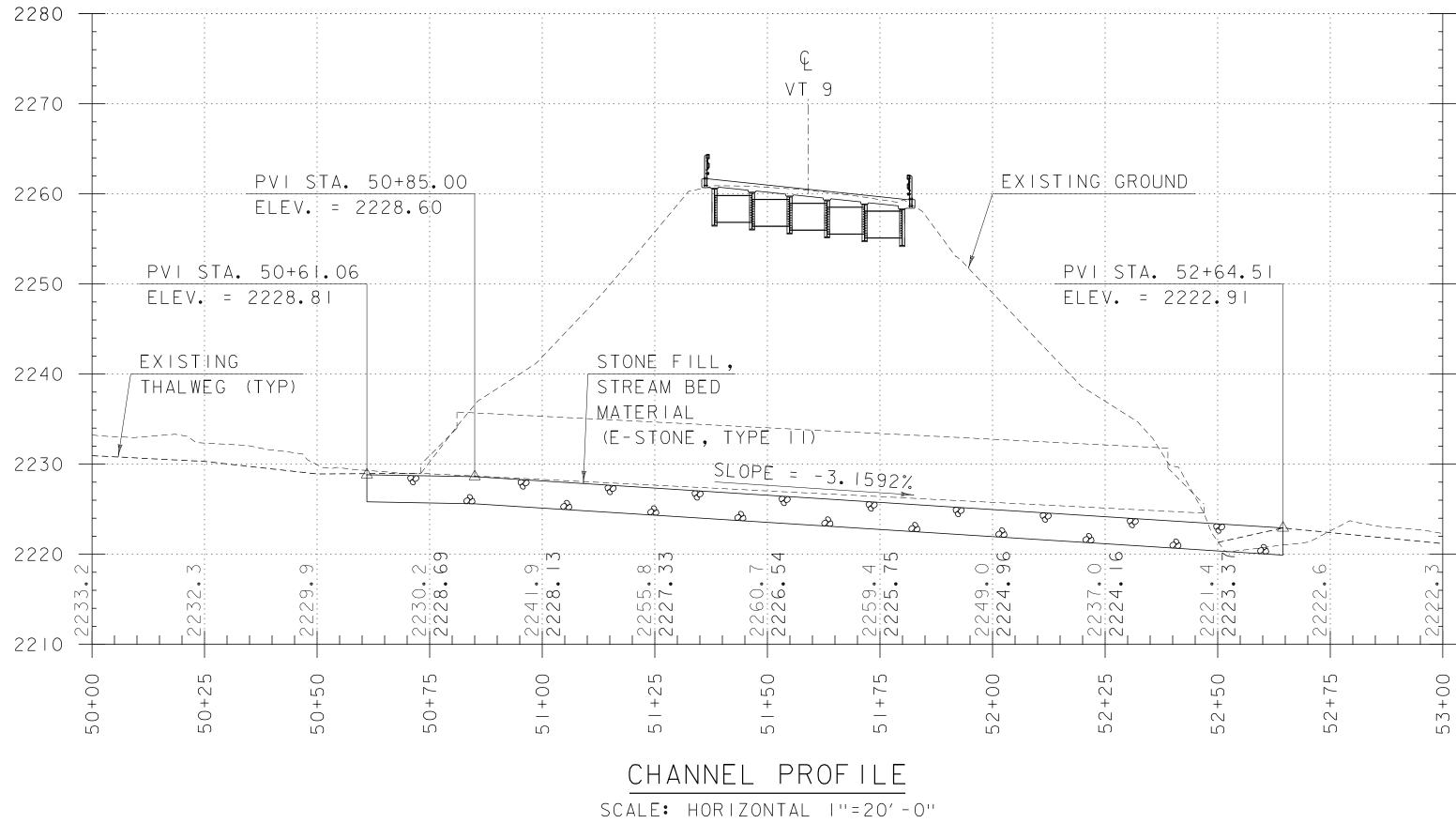
EXISTING FEATURES

	ROAD EDGE PAVEMENT ROAD EDGE GRAVEL DRIVEWAY EDGE DITCH FOUNDATION FENCE (EXISTING) FENCE WOOD POST FENCE STEEL POST GARDEN ROAD GUARDRAIL RAILROAD TRACKS CULVERT (EXISTING) STONE WALL WALL WOOD LINE BRUSH LINE HEDGE BODY OF WATER EDGE LEDGE EXPOSED		
PROJECT NAME: PROJECT NUMBER:	LEDGE EXPOSED SEARSBURG BF 010-1(50)		
FILE NAME: z13b332	leg.dgn	PLOT DATE:	10/17/2018


FILE NAME: zI3b332leg.dgn	PLOI DAIE: 10/17/2018
PROJECT LEADER: T.LEVINS	DRAWN BY: VTRANS
DESIGNED BY: VTRANS	CHECKED BY: T.LEVINS
LEGEND SHEET	SHEET 7 OF 32



AND ABOUT LINE. TO RG GO WEST HT ON THE FRAME HOUSE GROUND ONUMENT. ER THAN POLE M ND 7.2 M NCE TO A		HVCTRL #2 B95033 NORTH = 142547.4130 EAST = 1504504.3000 ELEV. = 2162.420 SEARSBURG, VT., ABOUT 10 M BENNINGTON, VT., ABOUT 7 M 10.5 M1 (16.9 KM) NORTH OF REACH FROM THE INTERSECTIO ALONG VT ROUTE 9 FOR 1.6 M INTERSECTION OF THE EAST E CM BELOW GROUND SURFACE IN MONUMENT POURED TO A DEPTH OF AND ABOUT 1 M (3.3 FT) 41.4 M (135.8 FT) EAST OF POLE NO. 354/655, 7.1 M ROAD GRADE, AND 0.5 M (1.6
5 6361 0235 6.616 SURVEY DISK 5034'' IN ROCK Z V: 2256.616	HVCRTL # 6 NORTH = 143830.2515 EAST = 1507399.5860 ELEV. = 2302.216 9 46.2 644.5/50 REBAR 0 0 0 0 0 0 0 0 0 0 0 0 0	NORTH = EAST = ELEV. =
	NORTH = EAST = ELEV. =	NORTH = EAST = ELEV. =


MI (16.1 KM) EAST OF MI (11.3 KM) WEST OF WILMINGTON, AND ABOUT OF THE MASSACHUSETTS/VERMONT STATE LINE. TO ION OF VT ROUTES 9 AND 8 IN SEARSBURG GO WEST MI (2.6 KM) TO THE MARK ON THE LEFT AT THE END OF AN OLD ROAD GRADE. THE MARK IS SET 2 IN THE TOP OF A 30 CM DIAMETER CONCRETE TH OF 1.5 METERS.IT IS IO.9 M (35.8 FT) SOUTH) LOWER THAN THE CENTERLINE OF VT ROUTE 9, F POLE NO. 656, 42.7 M (140.1 FT) WEST OF (23.3 FT) WEST OF THE CENTERLINE OF THE OLD .6 FT) NORTH OF A FIBERGLASS WITNESS POST.

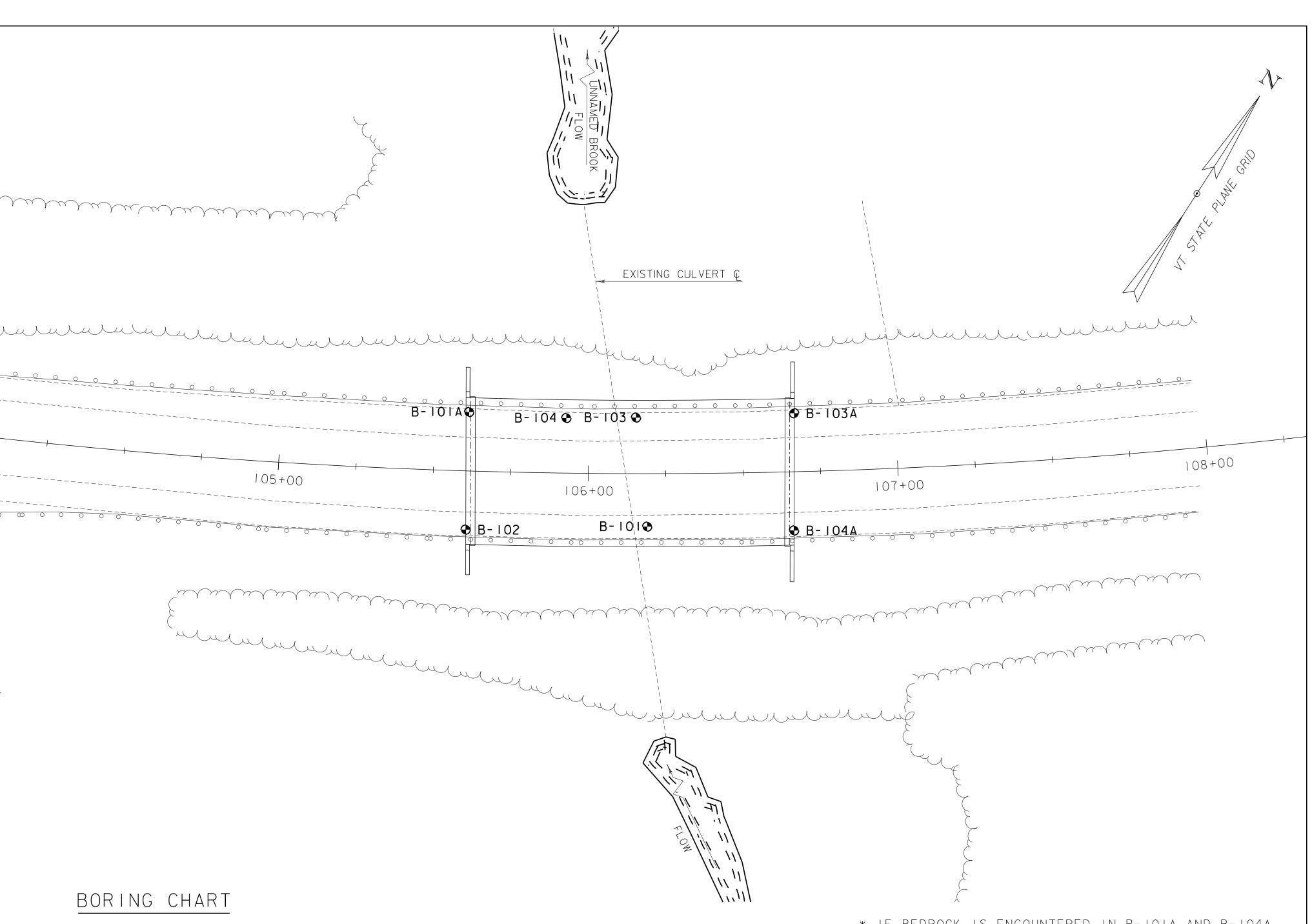
NORTH =	
EAST =	
ELEV. =	
NORTH =	
EAST =	
ELEV. =	
project name: SEARSBURG	
project number: BF 010-1(50)	
FILE NAME: XI3B332TI.DGN	PLOT DATE: 10/17/2018
PROJECT LEADER: T.LEVINS	DRAWN BY: T.MANNING
DESIGNED BY: VTRANS	CHECKED BY: T.LEVINS
TIE SHEET	SHEET 8 OF 32

								0.0	52 F	<u>२ Т</u>											· · ·								
						BEG	; I N	BR	DGE					E	ND	BRI	DG	E											
						STA		05+6	50.5	0									2										
																													D API A IO
																					· · · ·								TCH [
<u> </u>	 			+		I	L]]			11			I	<u> </u>					 			ļ	11	I	ļ		
105	+25		105	+5(С	10)5+	-75	10)6+	00		106	+25	$\overline{\mathbf{D}}$	106	+5	0		06	+75		07.	+00		107	+25		107+
	- - - - - - -																												
							-	-0.0	52 L	_ T																			- 0
-	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		STA	STA 	BEGIN BRI STA 105+6	BEGIN BRIDGE STA 105+60.5 105+25 105+50 105+75 10	BEGIN BRIDGE STA 105+60.50	STA 05+60.50	BEGIN BRIDGE STA 105+60.50	BEGIN BRIDGE STA 105+60.50	BEGIN BRIDGE E STA 105+60.50 S 	BEGIN BRIDGE END STA 105+60.50 STA 	BEGIN BRIDGE END BRI STA 105+60.50 STA 106 	BEGIN BRIDGE STA 105+60.50 STA 106+6 105+25 105+50 105+75 106+00 106+25 106+5	BEGIN BRIDGE STA 105+60.50 STA 106+66.5 105+25 105+50 105+75 106+00 106+25 106+50	BEGIN BRIDGE STA 105+60.50 STA 106+66.52 STA 106+66.52 I05+25 105+50 105+75 106+00 106+25 106+50 1	BEGIN BRIDGE STA 105+60.50 STA 106+66.52 STA	BEGIN BRIDGE END BRIDGE STA 105+60.50 STA 106+66.52	BEGIN BRIDGE END BRIDGE STA 105+60.50 STA 106+66.52 EN STA 106+66.52 Image: Star in the star	BEGIN BRIDGE END BRIDGE STA 105+60.50 STA 106+66.52 END F STA 106+66.52 END F STA 106+66.52 IO5+25 IO5+50 IO5+25 IO5+50 IO5+75 IO6+00 IO5+25 IO6+50	BEGIN BRIDGE END BRIDGE STA 105+60.50 STA 106+66.52 END PRO STA 105+60.50 STA 106+66.52 END PRO STA 105+60.50 STA 106+66.52 END PRO STA 107 I05+25 I05+50 I05+75 I06+00 I06+25 I06+50 I06+75 I07+00	BEGIN BRIDGE END BRIDGE STA 105+60.50 STA 106+66.52 END PROJEC STA 107+25 IO5+25 IO5+50 IO5+75 IO6+00 IO5+25 IO6+75 IO5+75 IO6+00	BEGIN BRIDGE END BRIDGE STA 105+60.50 STA 106+66.52 END PROJECT STA 107+25.00 IO5+25 IO5+50 IO5+75 IO6+00 IO5+25 IO5+50	BEGIN BRIDGE END BRIDGE STA 105+60.50 STA 106+66.52 END PROJECT STA 107+25.00 IO5+25 105+25 IO5+75 IO6+00 IO6+25 IO6+75 IO7+25	BEGIN BRIDGE END BRIDGE STA 105+60.50 STA 106+66.52 END PROJECT END STA 107+25.00 STA STA 107+25.00 STA IO5+25 IO5+50 IO5+75 IO5+25 IO5+50 IO5+75

VERTICAL I''=20'-0'' VERTICAL I''=10'-0''

- 2280			
2270			
2260			
2250			
2240			
- 2230			
- 2220			
- 2210			
r			

	project name: SEARSBURG project number: BF 010-1(50)	
ATES	FILE NAME: zI3b332pro.dgn PROJECT LEADER: T.LEVINS DESIGNED BY: T.MANNING CHANNEL PROFILE	PLOT DATE: IO/I7/2018 DRAWN BY: T.MANNING CHECKED BY:T.LEVINS SHEET II OF 32


SOIL CLASSIFICATION	COMMONLY USED SYMBOLS	
AASHTO AI Gravel and Sand A3 Fine Sand A2 Silty or Clayey Gravel and Sand A4 Silty Soil - Low Compressibility A5 Silty Soil - Highly Compressible A6 Clayey Soil - Low Compressibility A7 Clayey Soil - Highly Compressible	 ✓ Water Elevation G Standard Penetration Boring ⊕ Auger Boring ⊙ Rod Sounding S Sample N Standard Penetration Test Blow Count Per Foot For: 2"0.D. Sampler 1³/₈"I.D. Sampler Hammer Weight Of I40 Lbs. 	
ROCK QUALITY DESIGNATIONR.Q.D. (%)ROCK <a 1="" 2="" 8"bxcore="" 8"mdouble="" 8"nxcore="" aheadhsahollow="" augeraxcore="" barrel="" core="" coremdmud="" drillwawash="" href="https://www.communication-communicatio-c</th><th>Hammer Fall Of 30" i="" imitnpnon="" limitpiplastic="" limitplplastic="" plastic<="" samplebblastdcdiamond="" shear="" size="" soil="" stem="" testusundisturbed="" th="" tube="" usedllliquid="" vane="" vsfield=""><th><u></u></th>	<u></u>	
SHEAR STRENGTHUNDRAINEDSHEAR STRENGTHIN P.S.F.<250	 w Moisture Content (Dry Wgt.Basis) D Dry M Moist MTW Moist To Wet W Wet Sat Saturated Bo Boulder Gr Gravel Sa Sand Si Silt Cl Clay HP Hardpan Le Ledge NLTD No Ledge To Depth CNPF Can Not Penetrate Further TLOB Top of Ledge Or Boulder NR No Recovery Rec. Recovery %Rec. Percent Recovery 	104+00
CORRELATION GUIDE OF "N" TO DENSITY CONSISTENCYDENSITYCONSISTENCY (COHESIVE SOILS)DESCRIPTIVECONSISTENCY (COHESIVE SOILS)NTERMN<5	RQD Rock Quality Designation CBR California Bearing Ratio < Less Than > Greater Than R Refusal (N > 100) VTSPG NAD83 - See Note 7 <u>COLOR</u> blk Black pnk Pink bl Blue pu Purple brn Brown rd Red dk Dark tn Tan gry Gray wh White gn Green yel Yellow It Light mltc Multicolored or Orange	
		Н
<u>DEFINITIONS</u> BEDROCK (LEDGE) - Rock in its native location of indefinite thickness. BOULDER - A rock fragment with an average dimension > 12 inches. COBBLE - Rock fragments with an average dimension between 3 and 12 inches. GRAVEL - Rounded particles of rock < 3" and > 0.0787" (#10 sieve). SAND - Particles of rock < 0.0787" (#10 sieve) and > 0.0029" (#200 sieve). SILT - Soil < 0.0029" (#200 sieve), non or slightly plastic and exhibits no strength when air-dried. CLAY - Eine argined soil, exhibits	 <u>S</u> (AASHTO) VARVED - Alternate layers of silt and clay. HARDPAN - Extremely dense soil, cemented layer, not softened when wet. MUCK - Soft organic soil (containing > 10% organic material. MOISTURE CONTENT - Weight of water divided by dry weight of soil. FLOWING SAND - Granular soil so saturated (loose) that it flows into drill casing during extraction of wash rod. STRIKE - Angle from magnetic north to line of intersection of bed 	I. The sherei and (2. Soil of ties engin availo the A refle surfo borin 3. Obser

with a horizontal plane.

horizontal plane.

DIP - Inclination of bed with a

CLAY - Fine grained soil, exhibits plasticity when moist and considerable strength when air-dried.

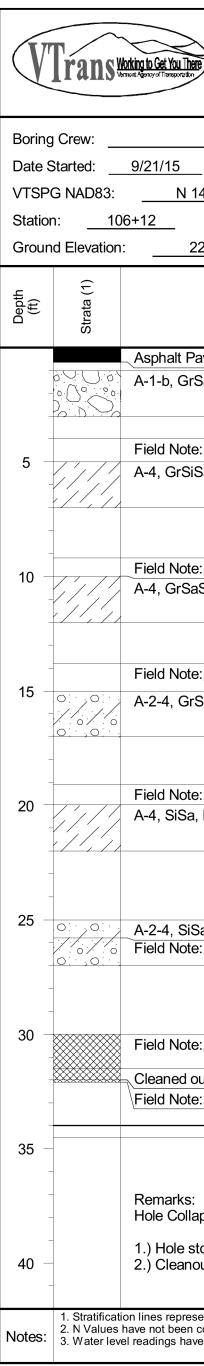
HOLE NO.	STATION	OFFSET	GROUND Elev.	BORING LAYOUT
B-101	106+19	17.2	2260.3	
B-103	106+12	- 8. 0	2259.0	SCALE I'' = 20'-0'' 20 0 20
B-104	105+93	- 17.8	2258.7	

subsurface explorations shown ein were made between 09-15-15 09-22-15 by the Agency.

and rock classifications, properand descriptions are based on neering interpretation from lable subsurface information by Agency and may not necessarily lect actual variations in subace conditions that may be ountered between individual ng or sample locations.

3. Observed water levels and/or conditions indicated are as recorded at the time of exploration and may vary according to the prevailing rainfall, methods of exploration and other factors.

GENERAL NOTES


- 4. Engineering judgment was exercised in preparing the subsurface information presented herein. Analysis and interpretation of subsurface data was performed and interpreted for Agency design and estimating purposes. Presentation of the information in the Contract is intended to provide the Contractor access to the same data available to the Agency. The subsurface information is presented in good faith and is not intended as a substitute for personal investigation, independent interpretation, independent analysis or judgment by the Contractor.
- 5. Pictorial structure details the boring plan layout or s profile are for illustrative only and may not accuratel portray final contract deta
- 6. Terminology used on boring describe the hardness, degr weathering, and spacing of fractures, joints and other discontinuities in the bedr defined in the AASHTO Manu Subsurface Investigations, IS
- 7. Northing and Easting coord are shown in Vermont State Grid North American Datum meters and survey feet.

* IF BEDROCK IS ENCOUNTERED IN B-IOIA AND B-IO4A, PROBES TO LOCATE BEDROCK SHALL BE DONE AT B-102 AND B-103A LOCATIONS.

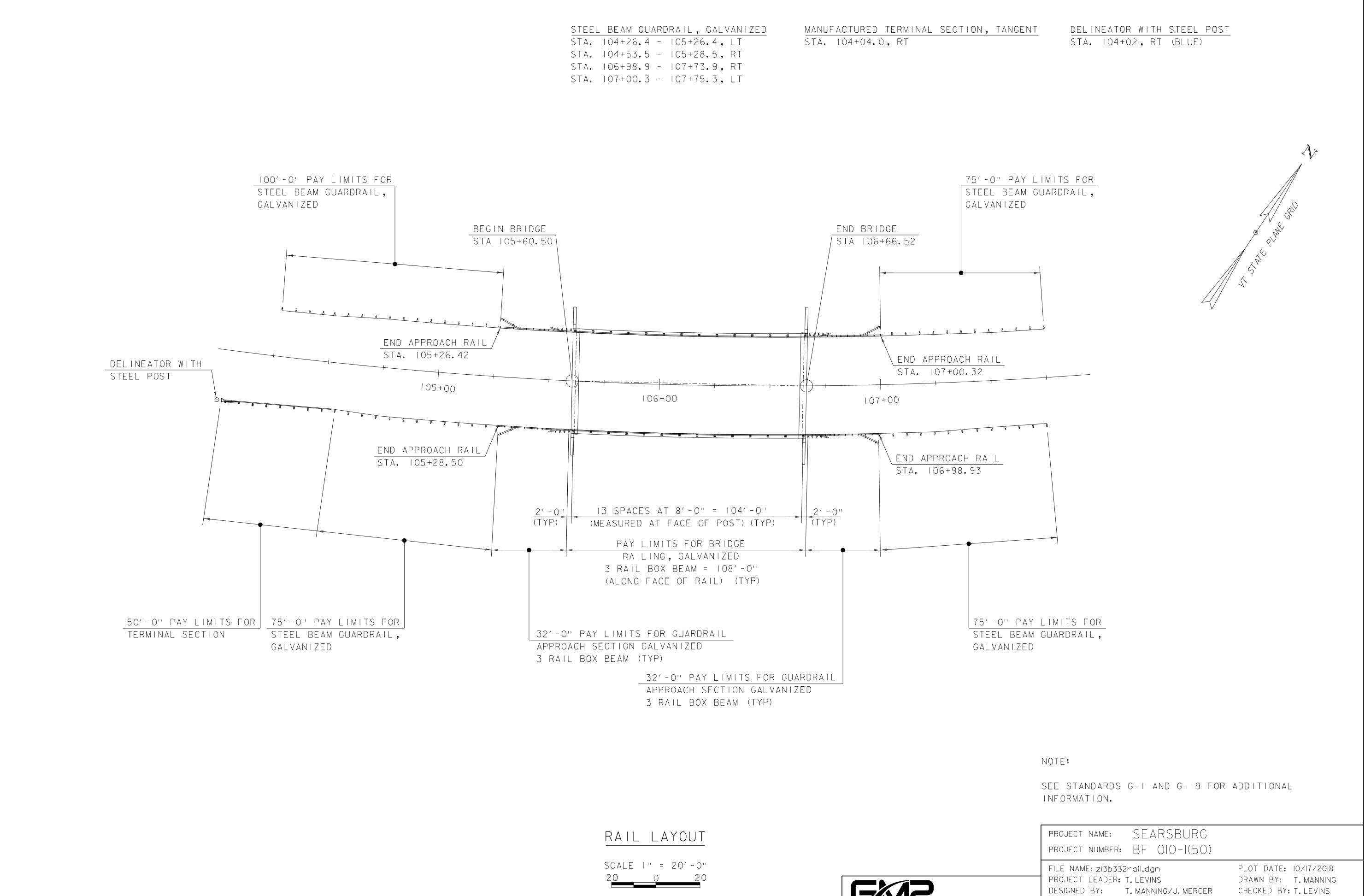
REQUESTED BORING CHART

shown on soils		HOLE NO.	STATION	OFFSET	NORTHING	EASTING		
e purposes ely		B-101A	105+61	- 19.0	143510.63	1506684.01		
tails.		*B-102	105+61	19.0	43474.23	1506694.91		
g logs to gree of		*B-103A	106+66	- 19.0	43543. 7	1506782.73		
		B-104A	106+66	19.0	143507.42	1506795.61		
ock is ualon 1988. dinates		ROJECT NAME: Roject numbi						
te Plane 1983 in	P I D I	LE NAME: Roject leade Esigned by: Oring inform4	DRAWN BY: Checked B	E: IO/I7/2018 B.WILLIAMS DY: T.LEVINS 2 OF 32				

	STATE OF VERMONT BORING LOG AGENCY OF TRANSPORTATION SEARSBURG CONSTRUCTION AND MATERIALS BUREAU MATERIALS BUREAU BF 010-1(50) VT-9 BR #20 Casing Sampler	Pa Pi Cl	oring No.: age No.: in No.: hecked By:		<u>2</u> 2	VT	STATE OF VERMONT BORING LOG Boring No.: B-101 AGENCY OF TRANSPORTATION SEARSBURG Page No.: 2 of 2 CONSTRUCTION AND MATERIALS BUREAU BF 010-1(50) Pin No.: 13b332 CENTRAL LABORATORY Casing Sampler Groundwater Observations
e S P(Crew: JUDKINS, HOOK Type: WB SS itarted: 9/15/15 Date Finished: 9/17/15 I.D.: 4 in 1.5 in G NAD83: N 143483.83 ft E 1506741.41 ft Hammer Wt: N.A. 140 lb. 0	Date De (1 9/17/15 27	ft) 7.3 Befor	Notes e Drilling. Drilling.		VTSPG Station:	Crew:JUDKINS, HOOKtarted:9/15/15Date Finished:9/17/15B NAD83:N 143483.83 ftE 1506741.41 ftHammer Fall:N A30 in
	CLASSIFICATION OF MATERIALS (Description)	Blows/6" (N Value)	Moisture Content % Gravel %	Sand %	Fines %	Depth (ft)	Strata (1)Strata (1)
	Asphalt Pavement, 0.0 ft - 0.6 ft A-1-b, SaGr, Lt/brn, Moist, Rec. = 10.0 ft Field Note:, Cleaned out Casing.	12-12- 10-13 (22)				45	A-4, SaGrSi, brn, Moist, Rec. = 0.4 ft, Lab Note: Broken Rock was within sample. 30- R@2.5" 9.6 35.6 28.5 35.9 A-4, SiSa, brn, Moist, Rec. = 1.3 ft 28-34- 25- R@2.5" 13.6 16.6 42.4 41.0 Field Note:, No Recovery. Field Note:, No Recovery. R@0.0" R@0.0" R 16.6 42.4 41.0
_	A-2-4, GrSiSa, Lt/brn, Moist, Rec. = 1.3 ft Field Note:, Cleaned out Casing.	11-14- 14-17 (28)					A-2-4, SaGrSi, brn, Moist, Rec. = 1.2 ft $36-18-15-12 \\ (33)$ 12.9 33.6 32.2 34.2 A-2-4, GrSiSa, gold-brn, Moist, Rec. = 0.9 ft $9-8-9-49 \\ (17)$ 15.4 22.7 51.6 25.7
-, -, -, -, -, -, -, -, -, -, -, -, -, -	A-4, GrSaSi, brn-gry, Moist, Rec. = 0.4 ft Field Note:, Cleaned out Casing.	/ R@1.5"	11.4 29.	.0 32.7	30.3	55	Visual Description:, SaGr, gold-brn, Moist, Rec. = 0.1 ft, Lab Note: Visual Description only. R@1.5" 7.5 Insufficient sample size for testing. Field Note:, Cleaned out Casing. 8 8 A-2-4, Sa, Lt/brn, Moist, Rec. = 0.3 ft 7.5 ft 9.0 1.7
	Field Note:, Cleaned out Casing. A-2-4, SaSiGr, brn-gry, Moist, Rec. = 1.0 ft, Lab Note: Broken Rock was within sample.	(R)		.4 29.8	32.8	60	Field Note:, Cleaned out Casing. (R) Field Note:, No Recovery., Clean out barrel was full of cobbles and boulders. R@0.0"
_	Field Note:, Cleaned out Casing.	(31)				ب ب ب ا ب ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا	Hole stopped @ 60.0 ft (R) Remarks: Hole Collapsed at 26.0 feet. 1.) Started using CME 45 Track rig at 44.0 feet.
	Field Note:, No Recovery.	15-8-6-5 (14)				VT AOT.GDT 11/19/	 2.) Added bentonite to drilling operation at 44.0 feet. 3.) Very hard drilling from 44.0 feet.
_	A-2-4, GrSaSi, brn-gry, MTW, Rec. = 0.9 ft	(3)	17.8 25.			- 07 - - 107 - - 107 -	
_	 A-1-b, SaGr, brn-gry, MTW, Rec. = 0.6 ft Field Note:, Cleaned out Casing. A-2-4, Sa with little (12.14%) organic material, blk, Moist, Rec. = 0.7 ft, Lab Note: Organic content determined using AASHTO T-267. 	(9)	12.9 49. 75.7 8.6			3F010-1(50).G	
	 A-4, SiSa with trace (<5%) organic material, Rec. = 1.1 ft, Lab Note: Organinc content determined visually. A-4, GrSaSi, brn, Moist, Rec. = 0.9 ft, Lab Note: Broken Rock was within sample. 	2-13-20- 24 (33) 33-22-	- 22.0 10. 16.4 25.			SEARSBURG	
_		25-19 (47)	10.7 20.	21.0		00 2	

	TE OF VERMONT OF TRANSPORTATIO	N			NG LOG			oring N		B-103 1 of 1 13b332 END		
	ISTRUCTION AND				RSBURG)10-1(50)			age No n No.:				
	RAL LABORATORY				9 BR #20		Cł	necked				
GARROW, NIE	ΞΤΟ	T		Casing	Sampler		Ground	vater C	Observa	itions		
_ Date Finished	d: <u>9/21/15</u>	Type: I.D.:		<u></u> 4 in	<u>SS</u> 1.5 in	Dat	e De (f	pth	N	otes		
43527.70 ft E	1506731.50 ft	Hamme		N.A.	140 lb.	09/21			No W.T	. to de	pth	
Offset:	-18.00	Hamme Hamme	er Fall: er/Rod T	<u>N.A.</u>	<u> </u>						•	
259.0 ft				5C SKID	$C_{\rm F} = 1.33$							
	CLASSIFICATION (Descrip		ERIALS				Blows/6" (N Value)	Moisture Content %	Gravel %	Sand %	Fines %	
wamant 0.0 ft	0.62.#						ш	۷ů	0	0,		
avement, 0.0 ft - Sa, Lt/brn, Moist,							7-8-9-9	6.0	40.6	47.6	11.	
							(17)	0.0	10.0	11.0		
e:, Cleaned out ca												
Sa, Lt/brn, Moist,	Rec. = 1.6 ft						16-19- 21-21	10.1	20.6	41.0	38.	
							(40)					
:, Cleaned out ca	U						10 10	11 5	27.4	24.4	20	
Si, Lt/brn, Moist,	кес. = 0.8 ft						12-13- 18-16 (31)	11.5	27.4	J4.4	ວຽ.	
e:, Cleaned out ca	asing.											
SiSa, Lt/brn, Mois	st, Rec. = 0.9 ft						8-11-11-	11.9	22.7	43.7	33.	
							13 (22)					
:, Cleaned out ca	asing											
Lt/brn-gry, Mois							11-18-	13.0	18.7	41.5	39.	
							11-7 (29)					
							0.0@4"		07.4	20.0	05	
SaGr, Lt/brn, Mois e:, Cleaned out ca	st, Rec. = 0.3 ft asing., Appears to be C	obbles.					8-R@4" (R)	9.9	37.4	36.8	25.	
:, No Recovery, /	Appears to be Silt.						WR-WR					
ut casing., 31.5 f	ft - 34.5 ft						WR-10 (WR)					
:, No Recovery							R@1" (R)					
	Hole stopped	@ 34.0	ft						·			
	t.											
apsed at 31.9 feet												
•	oken clean out barrel. s in the ground.											
topped due to bro												

DESIGNED BY: T. MANNING

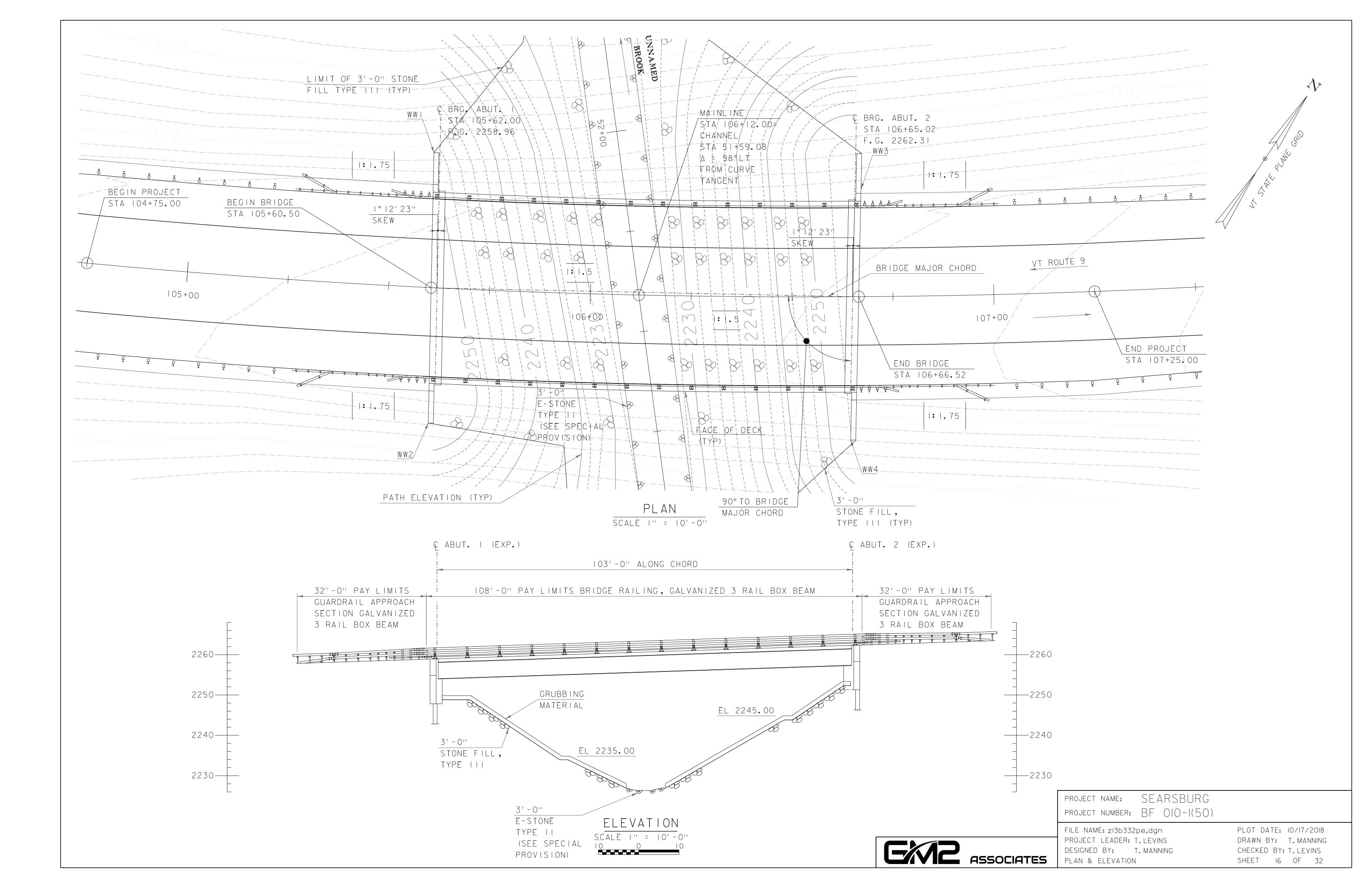

BORING LOGS (IOF 2)

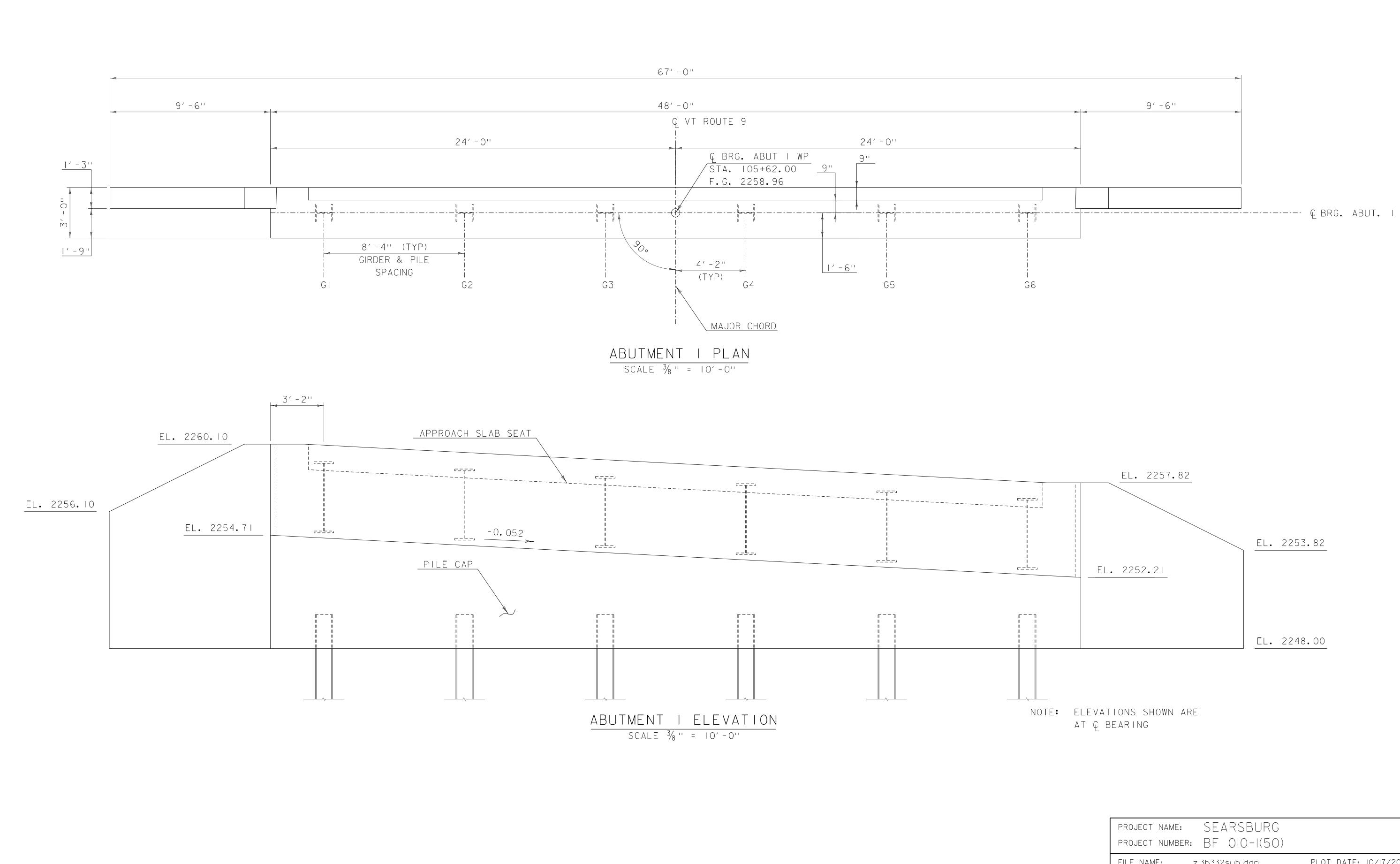
CHECKED BY: T.LEVINS SHEET 13 OF 32

	~	STATE OF VERMONT		BORI	NG LOG		Bo	ring No	D.: -	B-1(04	
	Trange		ON	SEA	RSBURG		Pa	ge No.	: _	1 of	2	
	11 4113	MATERIALS BUREAU CENTRAL LABORATORY			10-1(50) BR #20			Pin No.:				
				Casing	Sampler			ecked	-	<u>EN</u>	1D	
Boring	g Crew:	GARROW, NIETO	Type:	WB		Dat	Groundw			otes		
	Started:	9/22/15 Date Finished: 9/22/15	I.D.:	<u>4 in</u>	1.5 in	Da	te Dep (ft		IN	oles		
	PG NAD83:		Hamme Hamme		<u>140 lb.</u> 30 in.	09/22	2/15 26.4	4 V	V.T. aft	er drill	ling	
Statio	n: <u>10</u> nd Elevation	5+93 Offset: <u>-17.80</u> 2258.7 ft			to/AWJ							
Groui		2236.7 It	Rig:	CME 45C SKID	$C_{\rm F} = 1.33$							
Depth (ft)	Strata (1)	CLASSIFICATION (Descri		ERIALS			Blows/6" (N Value)	Moisture Content %	Gravel %	Sand %		
		Asphalt Pavement, 0.0 ft - 0.65 ft					-					
	_											
	_											
-	_											
5 -	_											
	-											
	_											
	_											
10 -												
10	_											
	_											
	_											
	_											
15 -	_											
-	_											
	_											
-	_											
20 -	_											
-	_											
	-											
	-											
	-											
25 -												
-	_									1		
-	_											
30 -		A-1-b. SaGr. grv. Moist. Rec. = 0.5 ft					15-10-9-	13.1	47.5	38.5		
30 -		A-1-b, SaGr, gry, Moist, Rec. = 0.5 ft					15-10-9- 21 (19)	13.1	47.5	38.5		
30		A-1-b, SaGr, gry, Moist, Rec. = 0.5 ft A-1-a, SaGr, gry, Moist, Rec. = 0.8 ft, Lab Note:	Broken Ro	ock was within sam	ble.		(19)	13.1 8.7		38.5 22.5		
30			Broken Ro	ock was within sam	ble.		15-10-9- 21 (19) 38- R@2.5" (R)					
-		A-1-a, SaGr, gry, Moist, Rec. = 0.8 ft, Lab Note: Field Note:, Cleaned out casing. A-2-4, SiSaGr, gry-brn, Moist, Rec. = 0.8 ft, Field	d Note: Bro	own appears in thin			(19) 38- R@2.5" (R) 48-R@5"					
30		A-1-a, SaGr, gry, Moist, Rec. = 0.8 ft, Lab Note: Field Note:, Cleaned out casing.	d Note: Bro Rock was w	own appears in thin <i>i</i> ithin sample.	alternating		(19) 38- R@2.5" (R)	8.7	69.8 33.7	22.5		

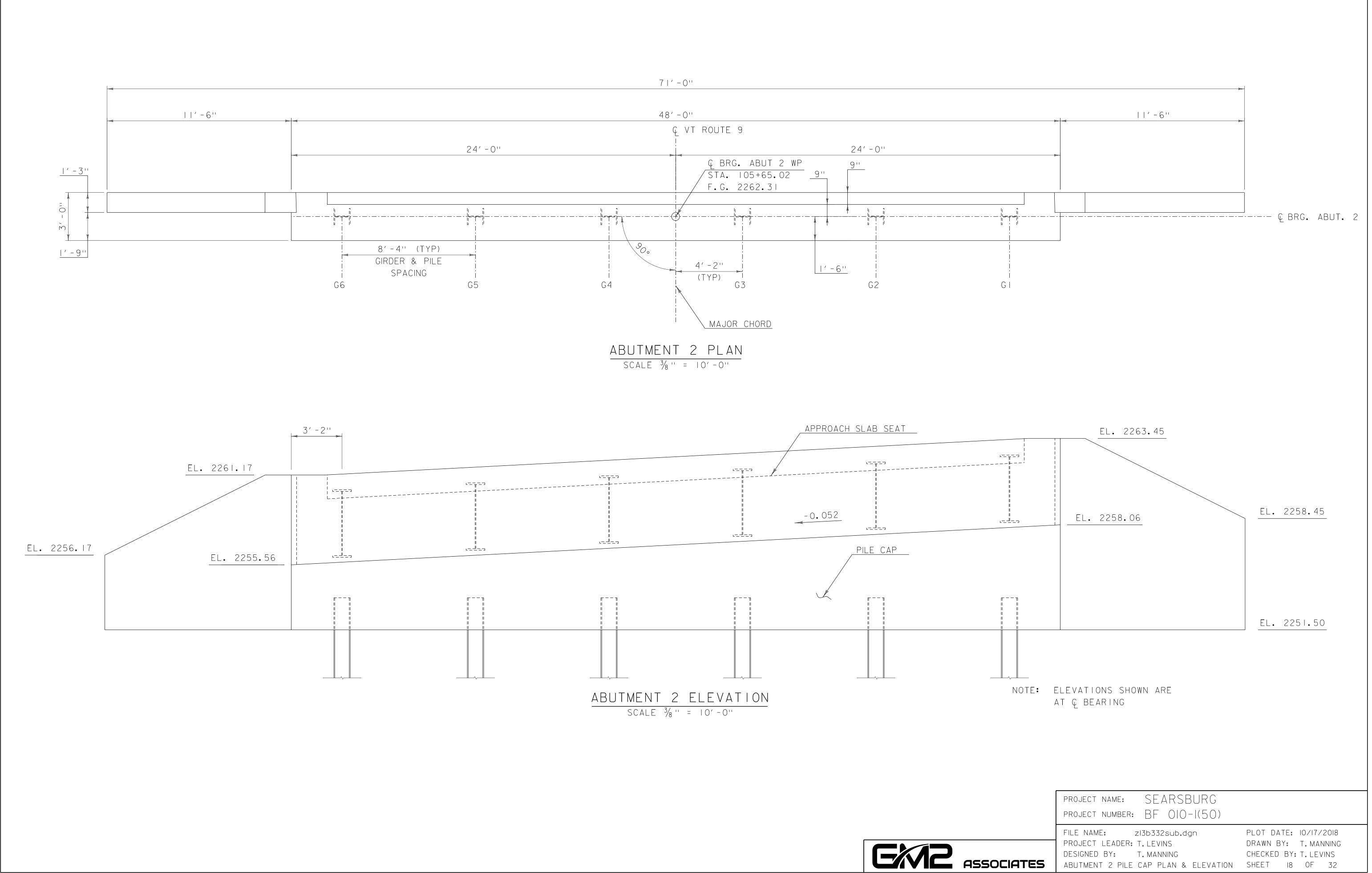
V	Frans	STATE OF VERMONT AGENCY OF TRANSPORTATIO CONSTRUCTION AND		SEA	NG LOG		Pa	ring N ge No).:	<u>)4</u>			
		MATERIALS BUREAU CENTRAL LABORATORY				10-1(50)) BR #20			n No.: ecked		<u>13b33</u> EN		
Boring) Crew:	GARROW, NIETO			Casing	Sampler		Groundw		-	<u> </u>		
	Started:	9/22/15 Date Finished: 9/22/15	Type: I.D.:		<u></u> 4 in	<u> </u>	Dat			N	otes		
		N 143524.11 ft E 1506715.80 ft	Hamme	er Wt:	<u> </u>	140 lb.	09/22	(ft /15 26./		W.T. after drilling.			
Statior	n: <u>10</u>	05+93 Offset: <u>-17.80</u>	Hamme	er Fall: er/Rod Tyj	<u>N.A.</u>	<u>30 in.</u> to/AWJ	00,22	10 20.	•	a		ing.	
Groun	d Elevation	2258.7 ft	Rig: _	CME 450		$C_{\rm F} = 1.33$							
Depth (ft)	Strata (1)	CLASSIFICATION (Descri		ERIALS				Blows/6" (N Value)	Moisture Content %	Gravel %	Sand %	Fines %	
		A-1-b, SiSaGr, Lt/brn, Moist, Rec. = 0.9 ft						24-23- 14-13	10.1	50.5	29.4	20.1	
_		Field Note:, Cleaned out casing.						(37)					
_		A-2-4, SiSaGr, Lt/brn-brn, Moist, Rec. = 0.7 ft, L	ab Note:	Broken Re	ock was wit	hin sample.		17-17- 14- P@2.5"	13.3	34.5	33.6	31.9	
_		Field Note:, No Recovery			R@2.5" (31) R@0"								
45 —		Field Note:, Cleaned out casing.						R@0" (R)					
-		Field Note:, No Recovery, Appears to be sand ar Field Note:, Cleaned out casing., Appears to be o			re			R@1" (R)					
_		Field Note:, No Recovery, Appears to be sand.			15.								
_	_	Field Note:, Cleaned out casing., Appears to be o					/	R@0" (R)					
50 -		A-1-b, SaGr, Lt/brn, Moist, Rec. = 0.4 ft, Lab No	te: Broke	n Rock wa	as within sa	mple.		R@5" (R)	13.4	47.5	34.9	17.6	
-	-												
- 55 —	- -	∖A-3, Sa, Lt/brn, Moist, Rec. = 0.2 ft						R@2.5" (R)	29.8	3 3.6	90.4	6.0	
-	-							(K)					
60 —		Field Note:, No Recovery, Appears to be sand.						28 P@1"					
_		Hole stoppe	d @ 60.6	ft				28-R@1" (R)	1				
_	_	Remarks: Hole Collapsed at 60.6 feet.											
65 —	-	1.) Changed to mud drilling from 50 feet.											
_													
_	-												
-													
70	-												
_	-												
_	-												
75 —	-												
	-												
_													
-													
_													
Notes:	2. N Values	ion lines represent approximate boundary between material typ have not been corrected for hammer energy. $C_{\rm E}$ is the hammer rel readings have been made at times and under conditions stat	energy corr	ection factor		er factors than	those pre	esent at the ti	me me	asureme	nts were	made.	
	1												

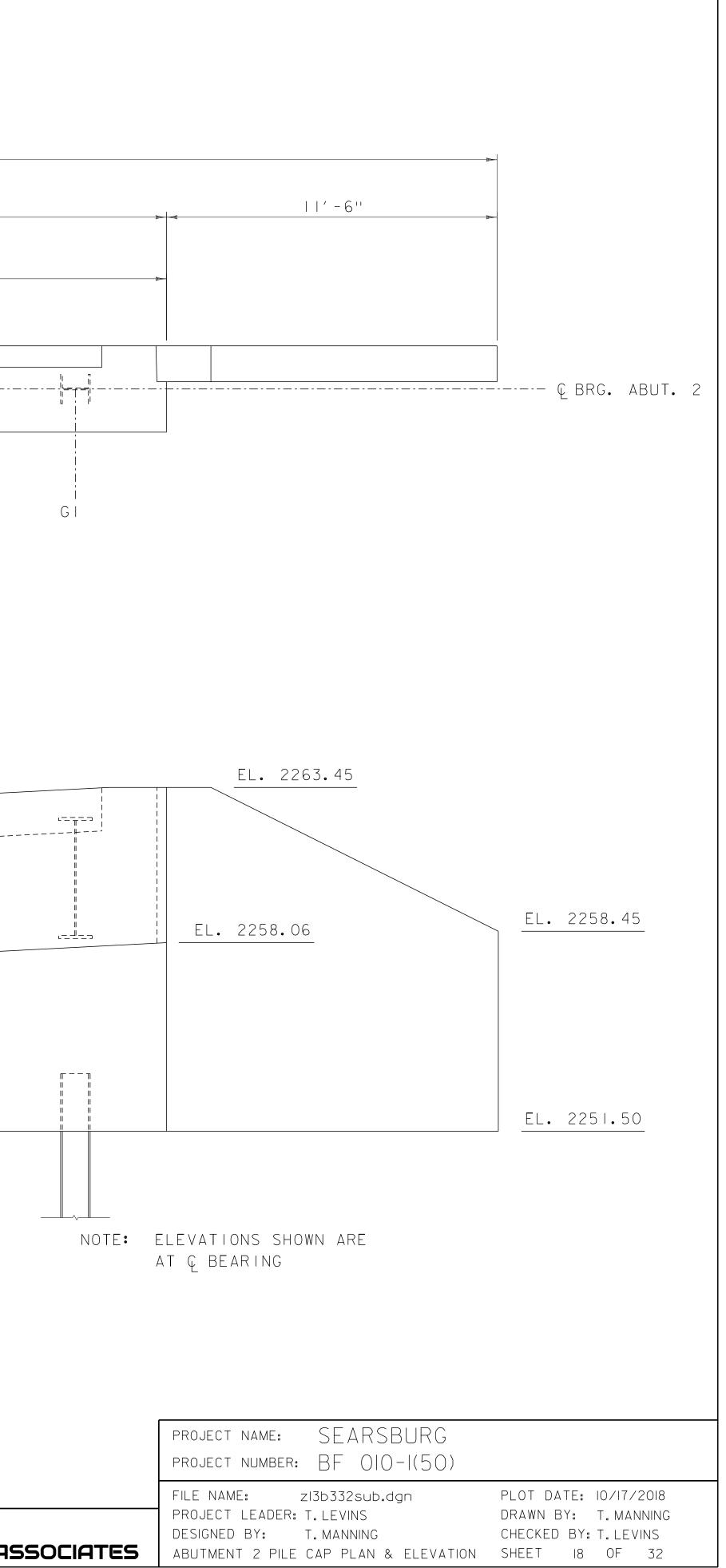
PROJECT NAME:	SEARSBURG	
PROJECT NUMBER:	BF 010-1(50)	
FILE NAME:	zl3b332bor_info.dgn	PLOT DATE: 10/17/2018
PROJECT LEADER: 7	T.LEVINS	DRAWN BY: T. MANNING
DESIGNED BY:	T. MANNING	CHECKED BY: T.LEVINS
BORING LOGS (2 OF	2)	SHEET 14 OF 32

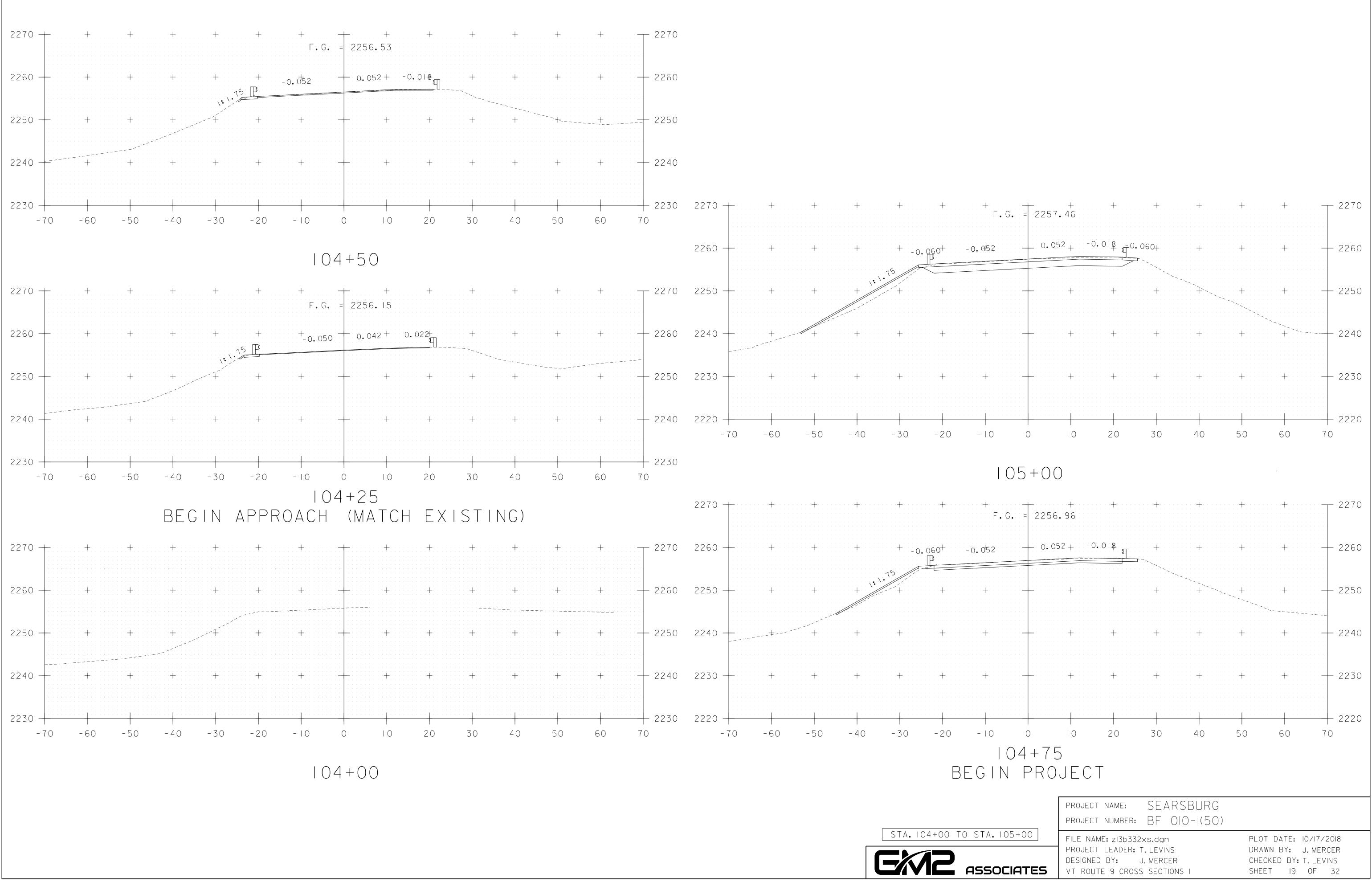


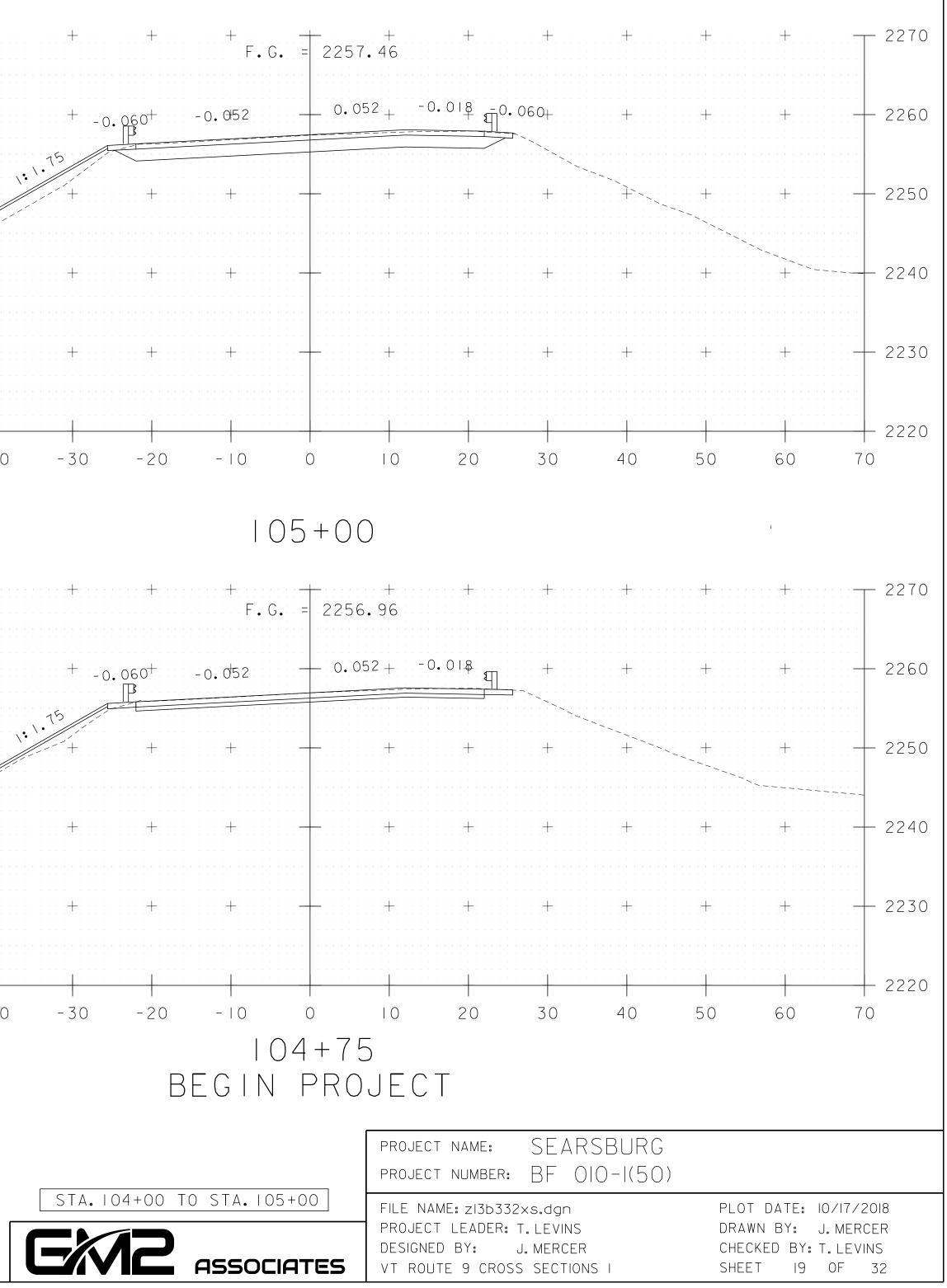

STEEL	BEAM	GUAF	RDRAIL	, GAL\	/ANIZE
STA.	104+26	5.4 -	- 105+2	26.4,	LT
STA.	104+53	3.5 -	- 105+2	28.5,	RT
STA.	106+98	3.9 -	- 107+7	′3 . 9,	RT
STA.	07+00).3 -	- 107+7	′5.3,	LΤ

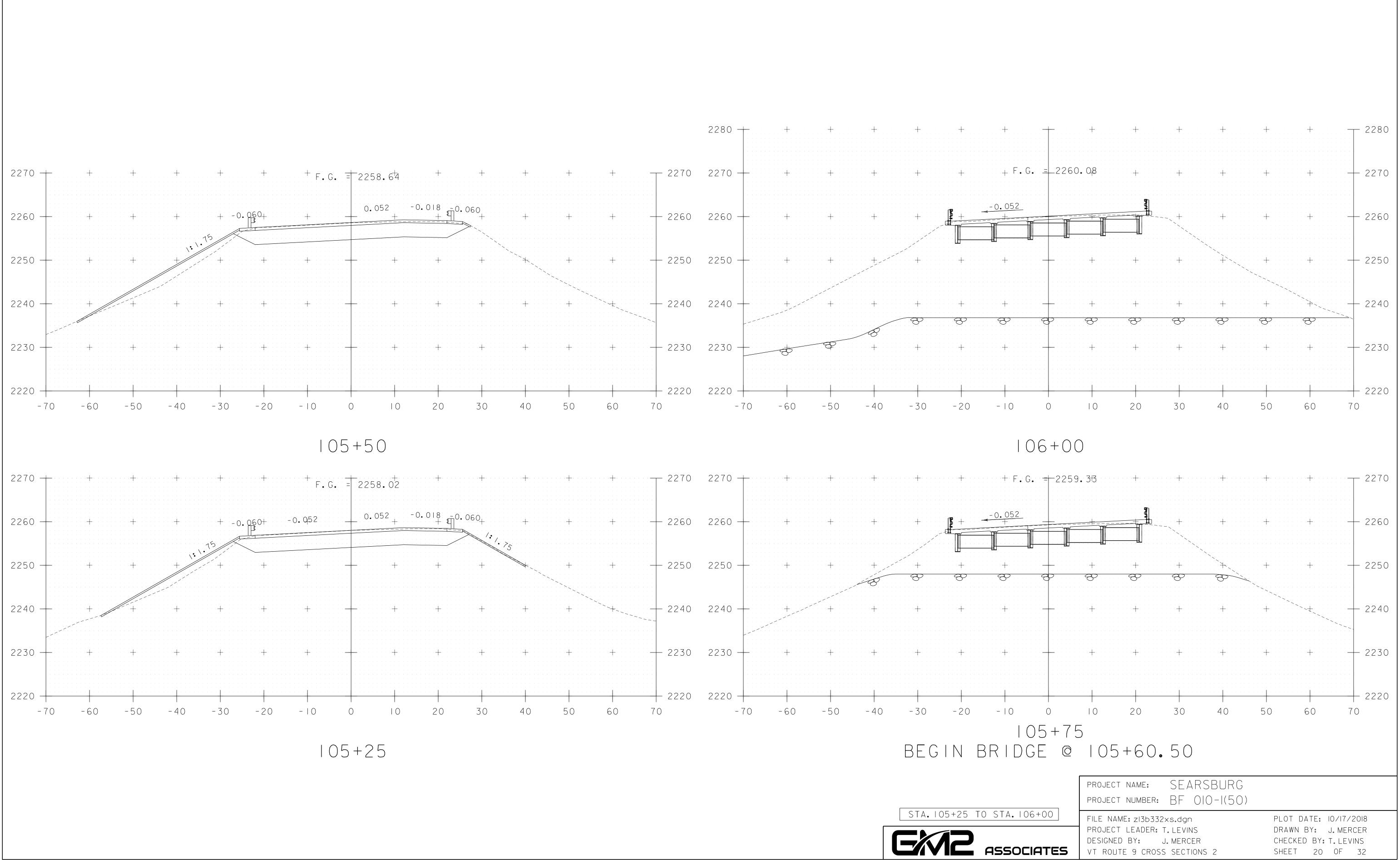
RAIL LAYOUT SHEET

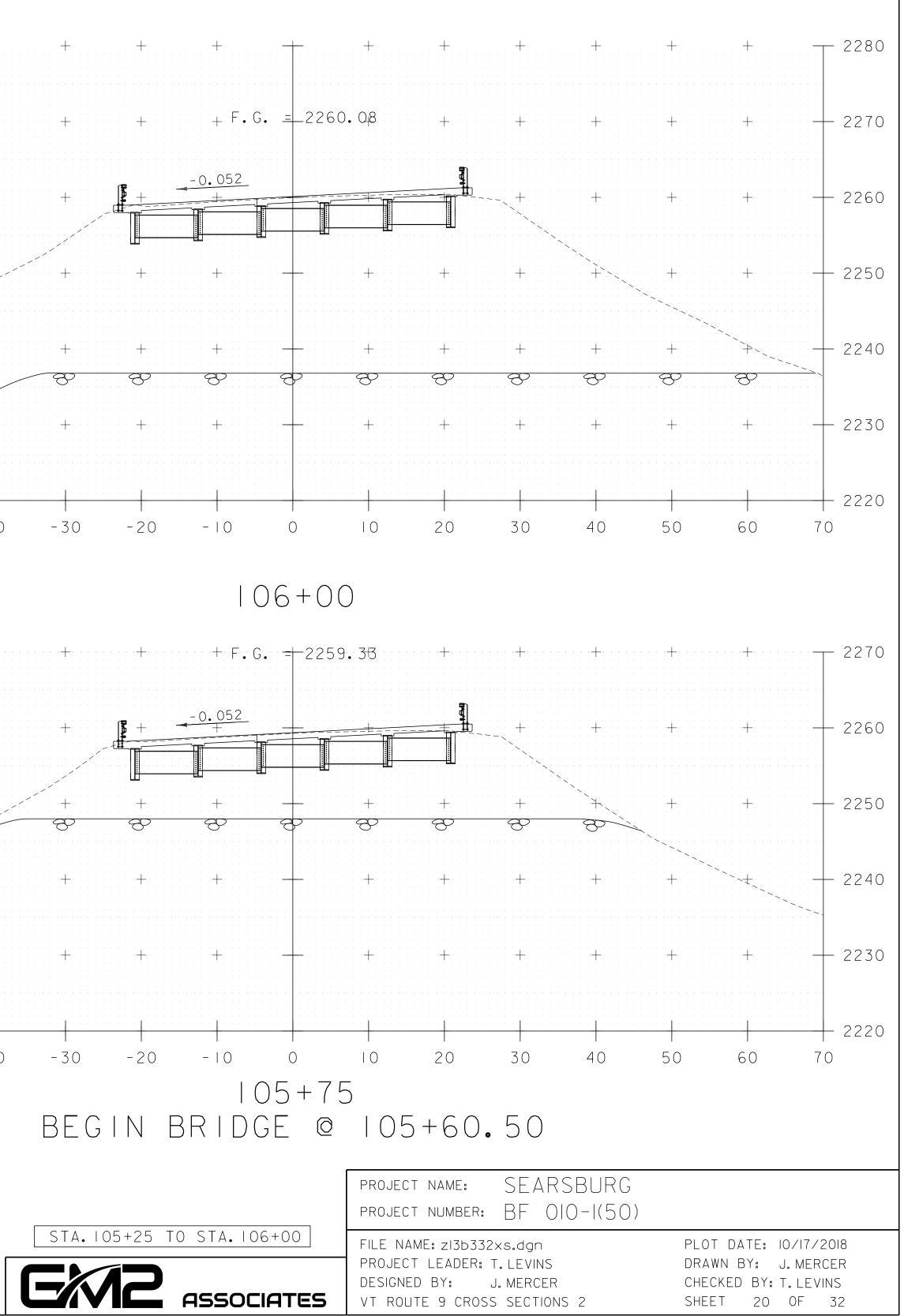

CHECKED BY: T.LEVINS SHEET IS OF 32

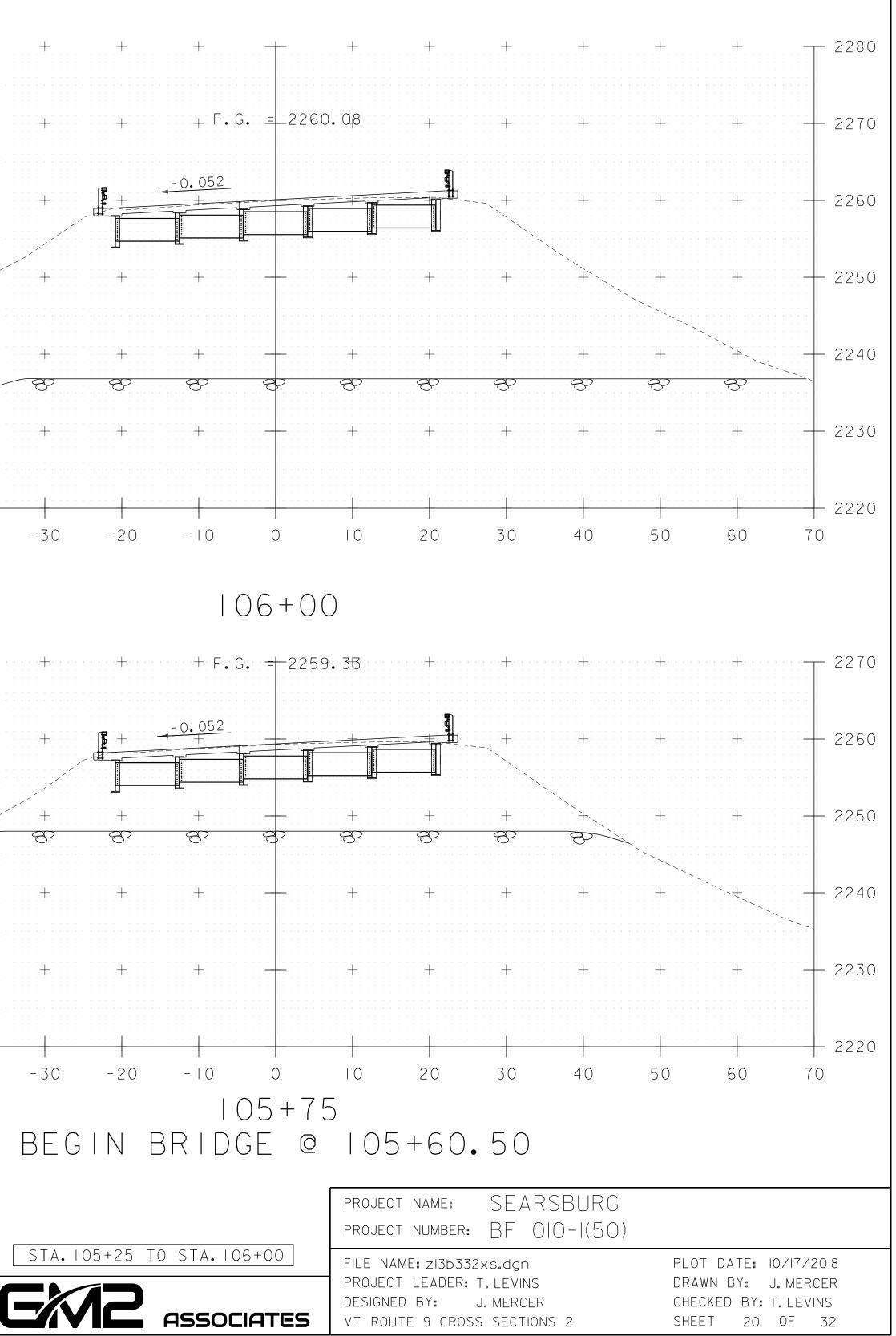


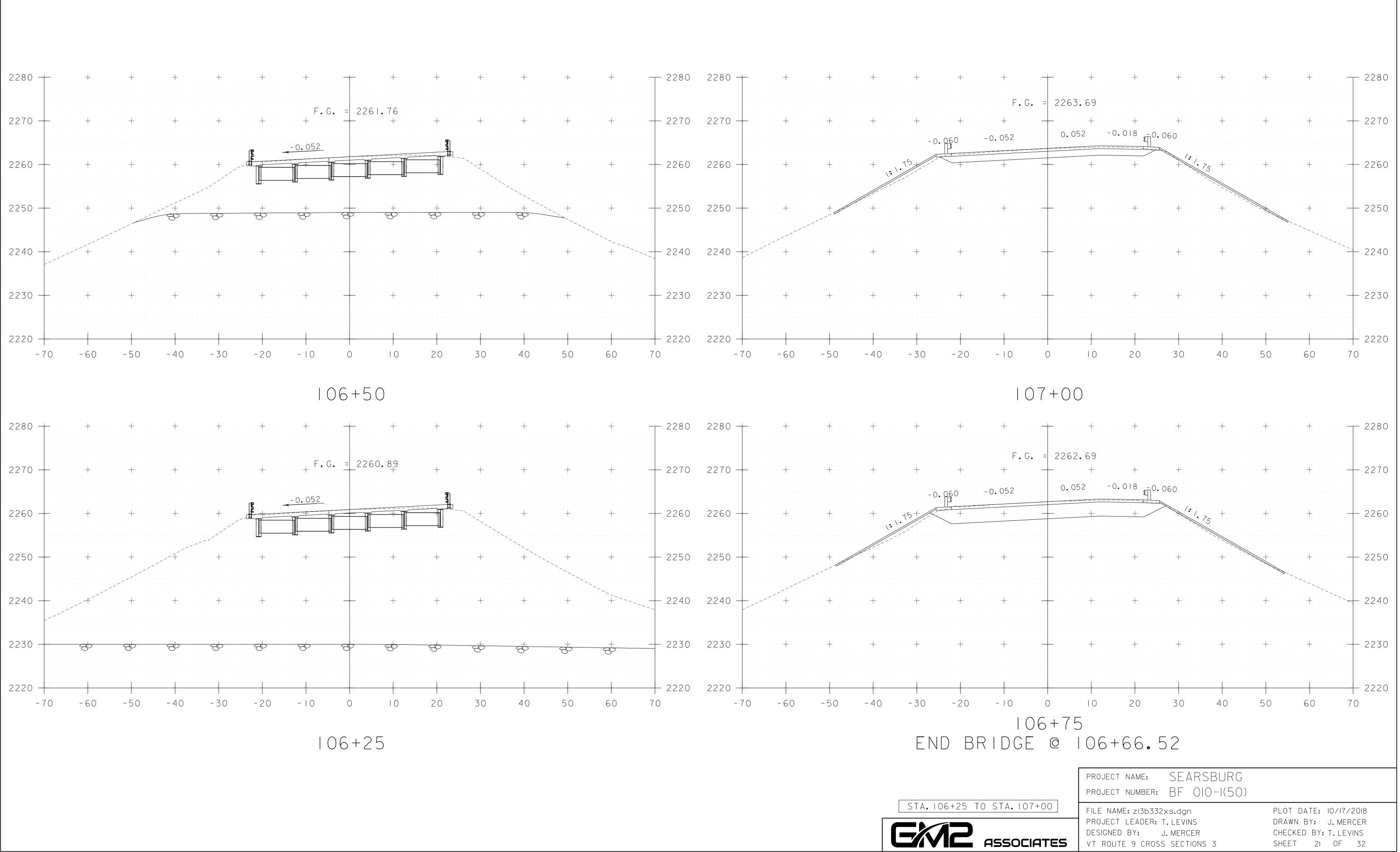


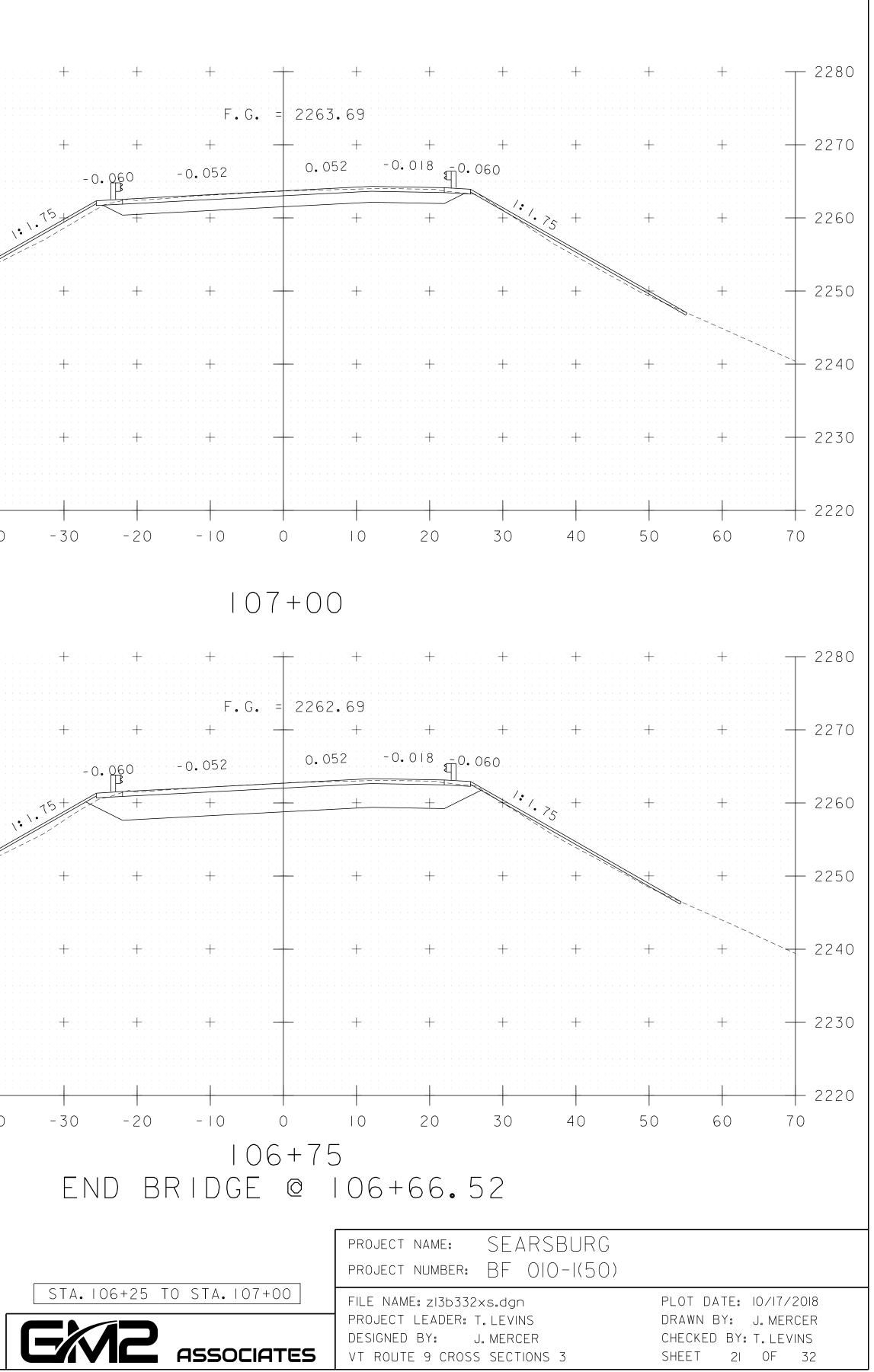

	PROJECT NAME: SFARSBURG	
	project number: BF 010-1(50)	
	FILE NAME: zI3b332sub.dgn	PLOT DATE: 10/17/2018
	PROJECT LEADER: T.LEVINS DESIGNED BY: T.MANNING	DRAWN BY: T.MANNING Checked by: T.Levins
IATES	ABUTMENT I PILE CAP PLAN & ELEVATION	SHEET 17 OF 32

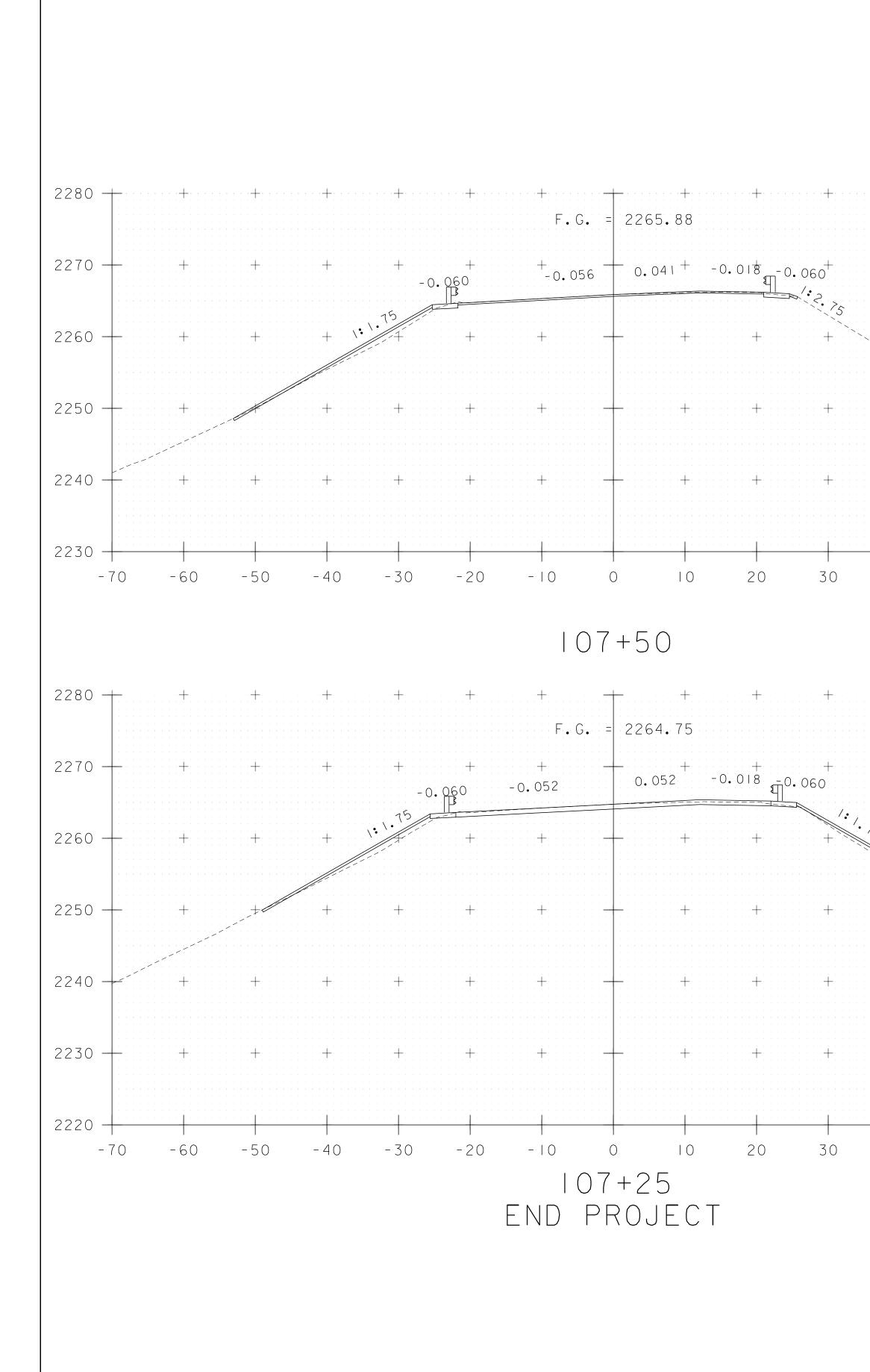


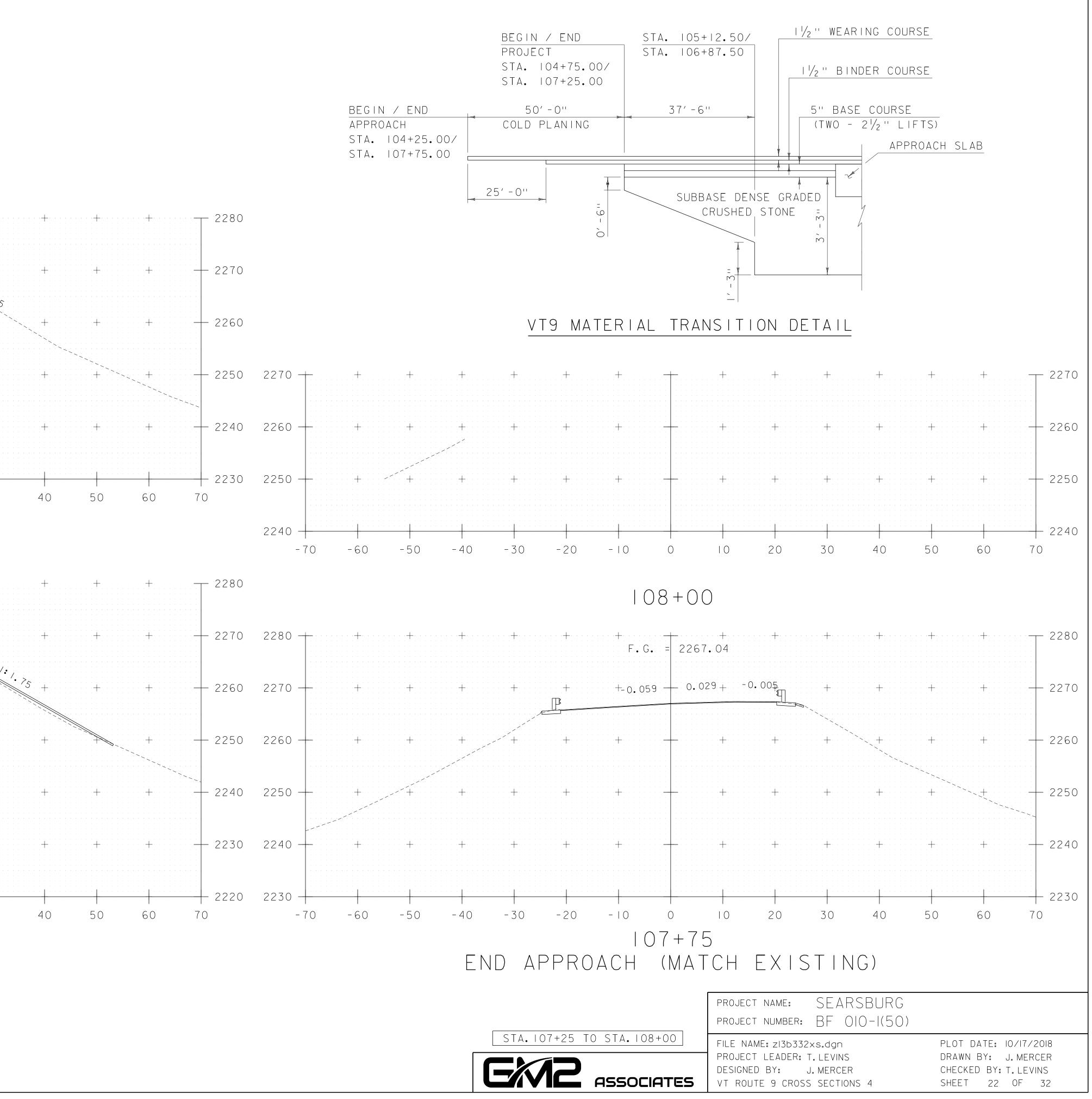


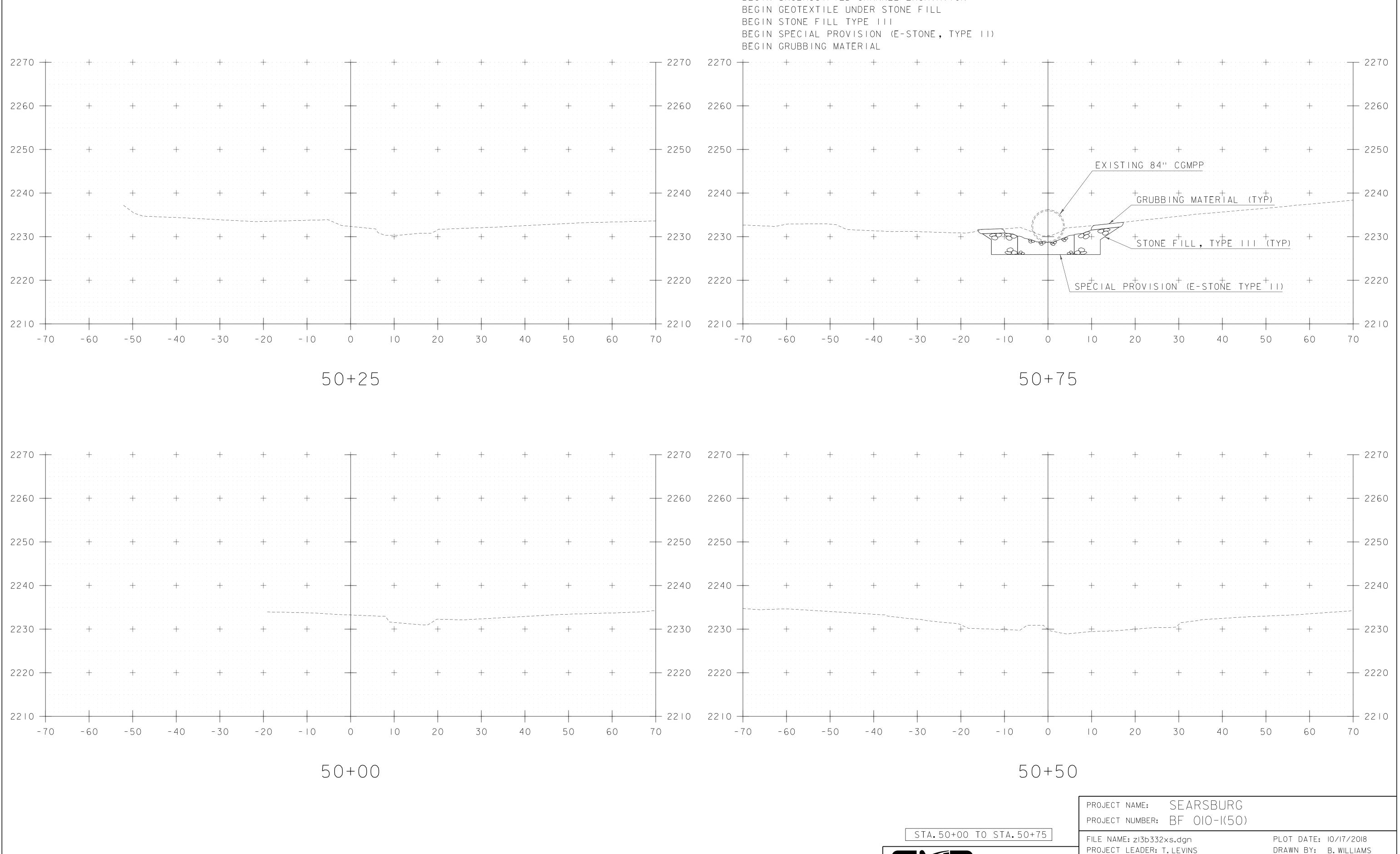


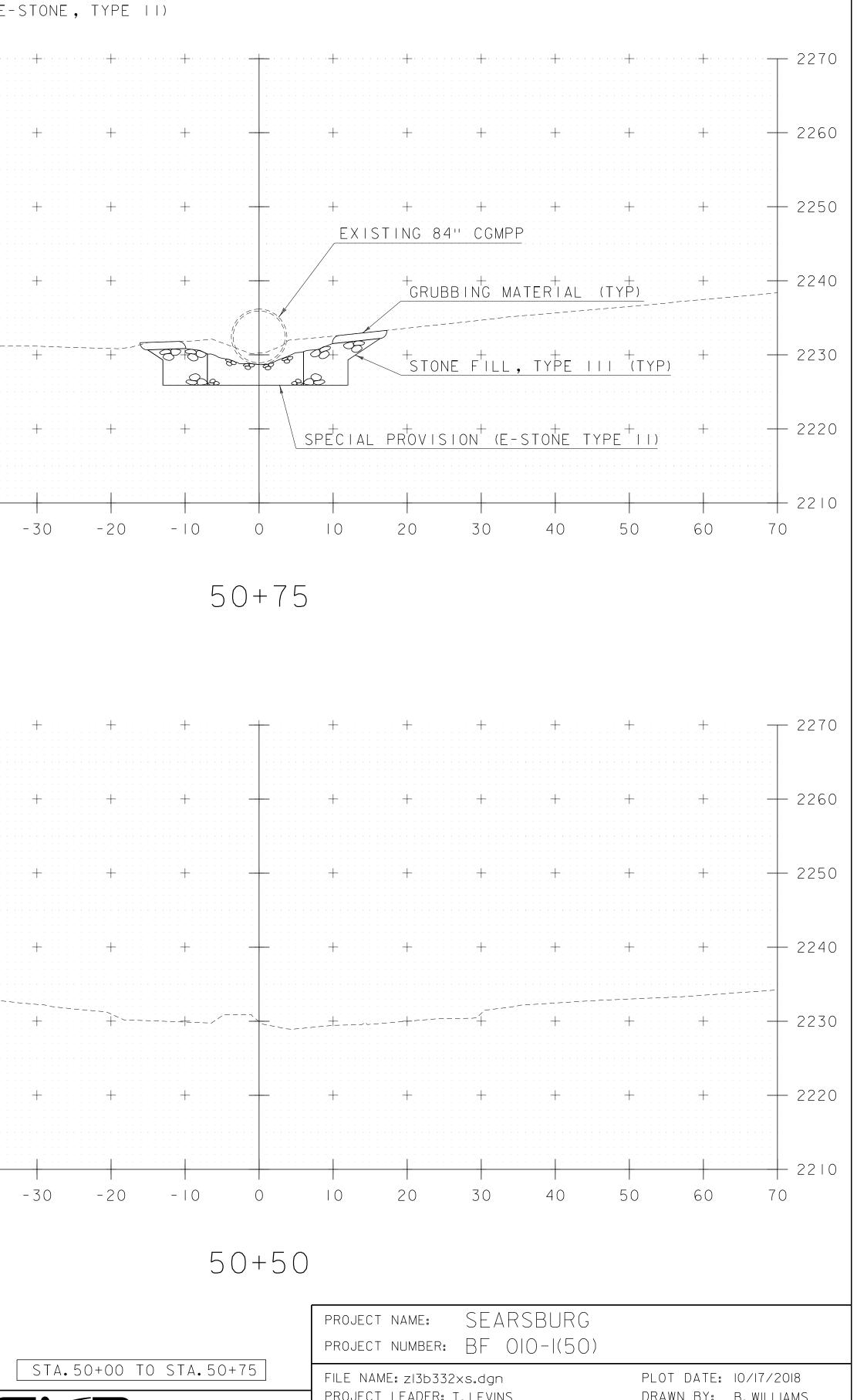


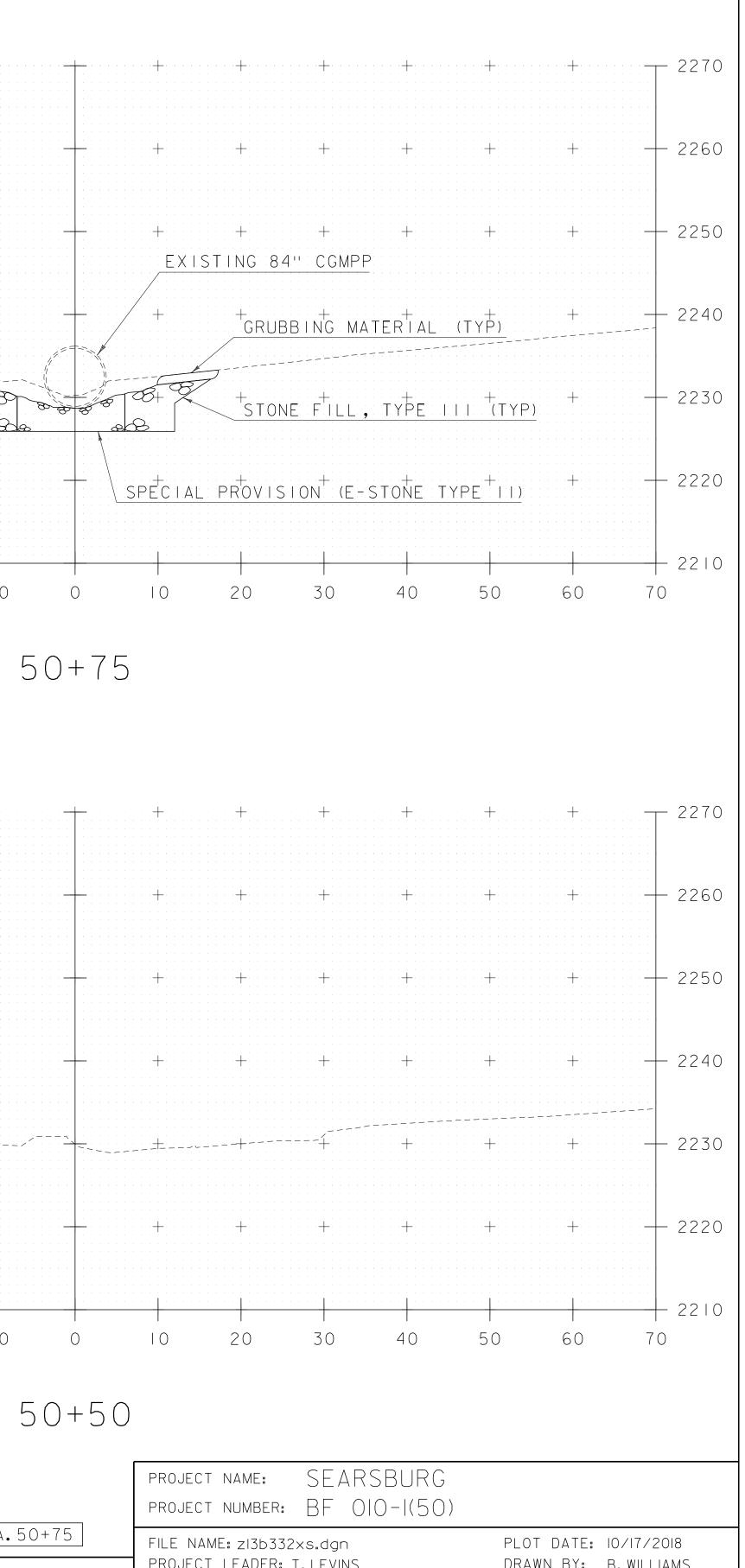


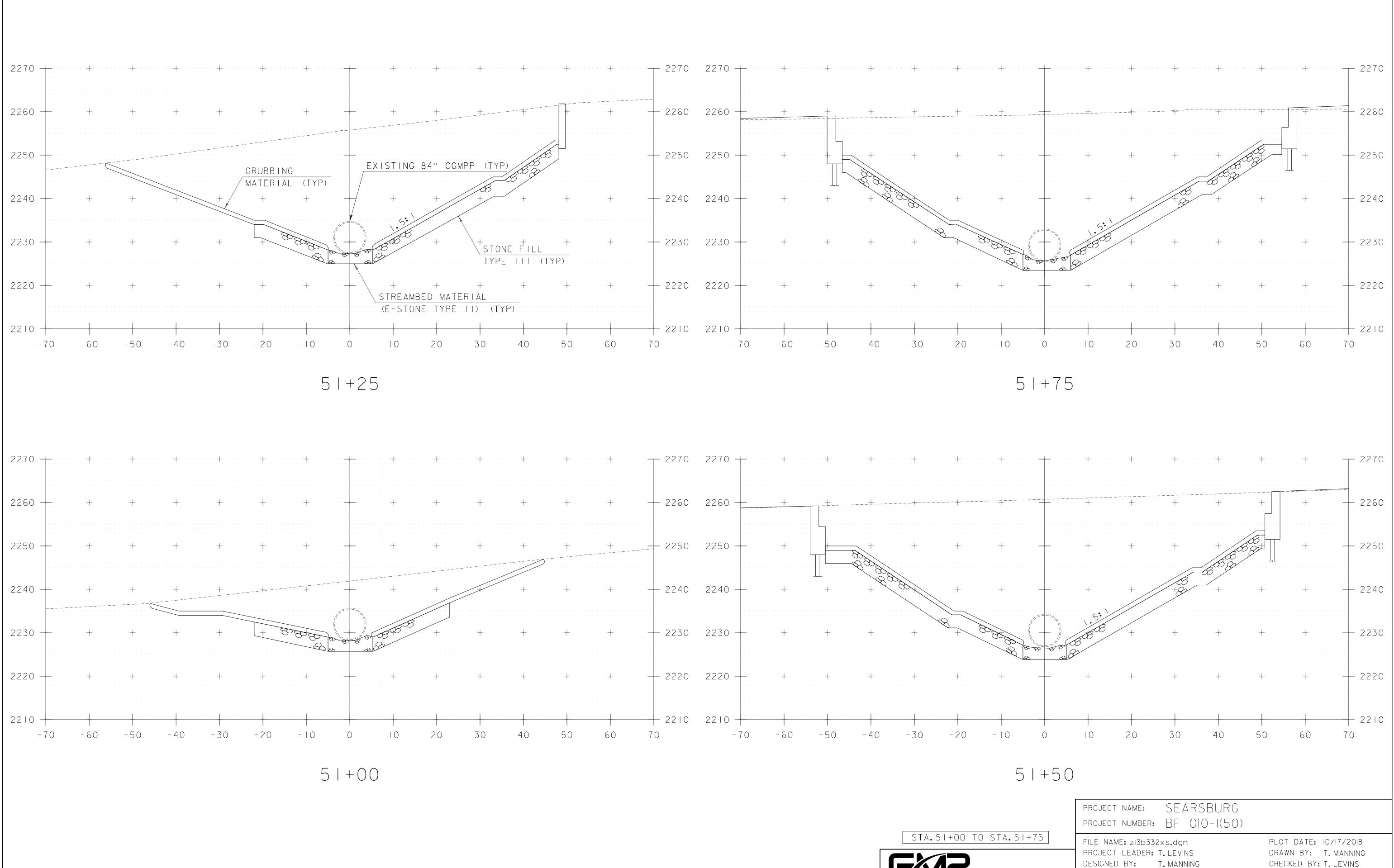


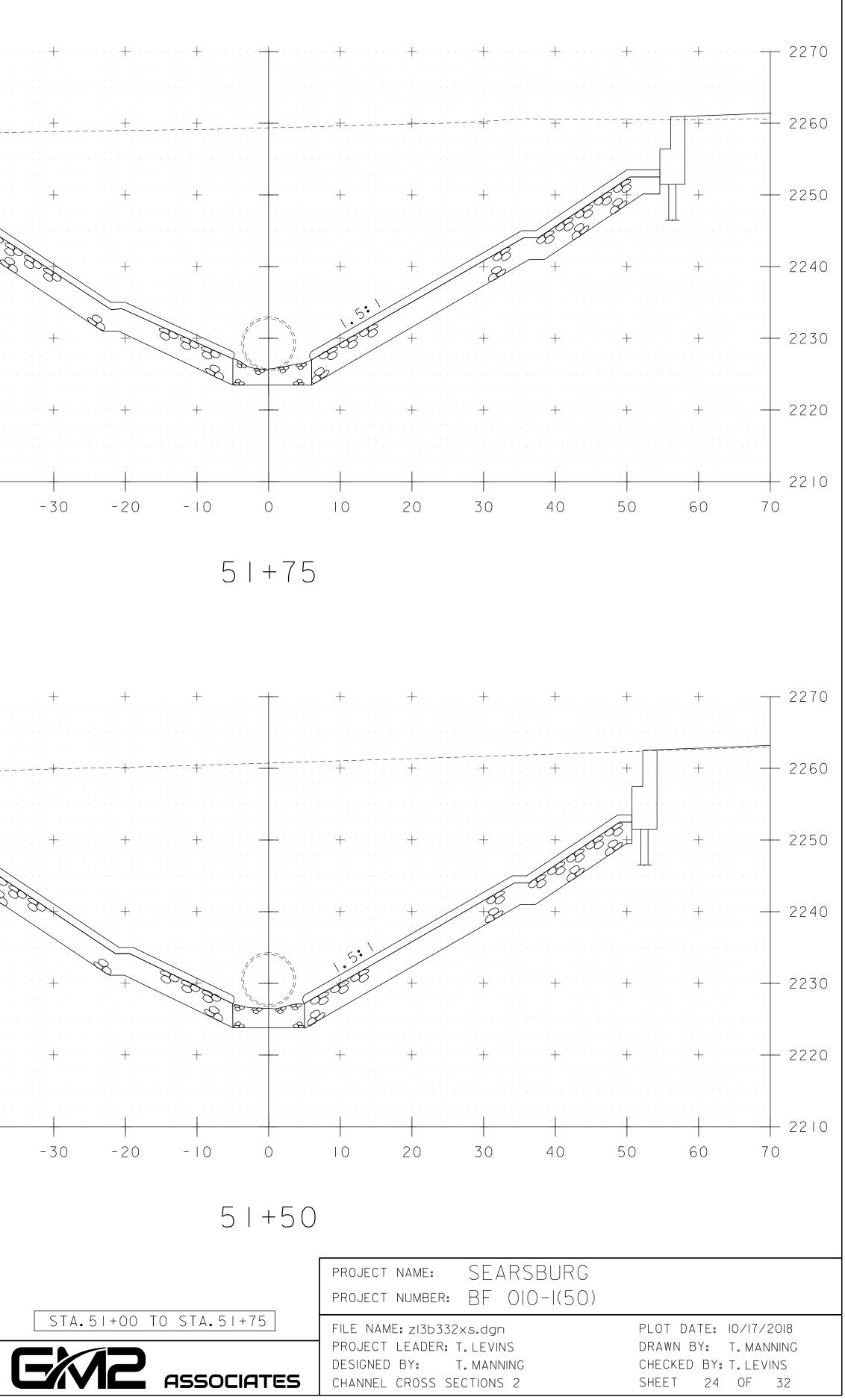


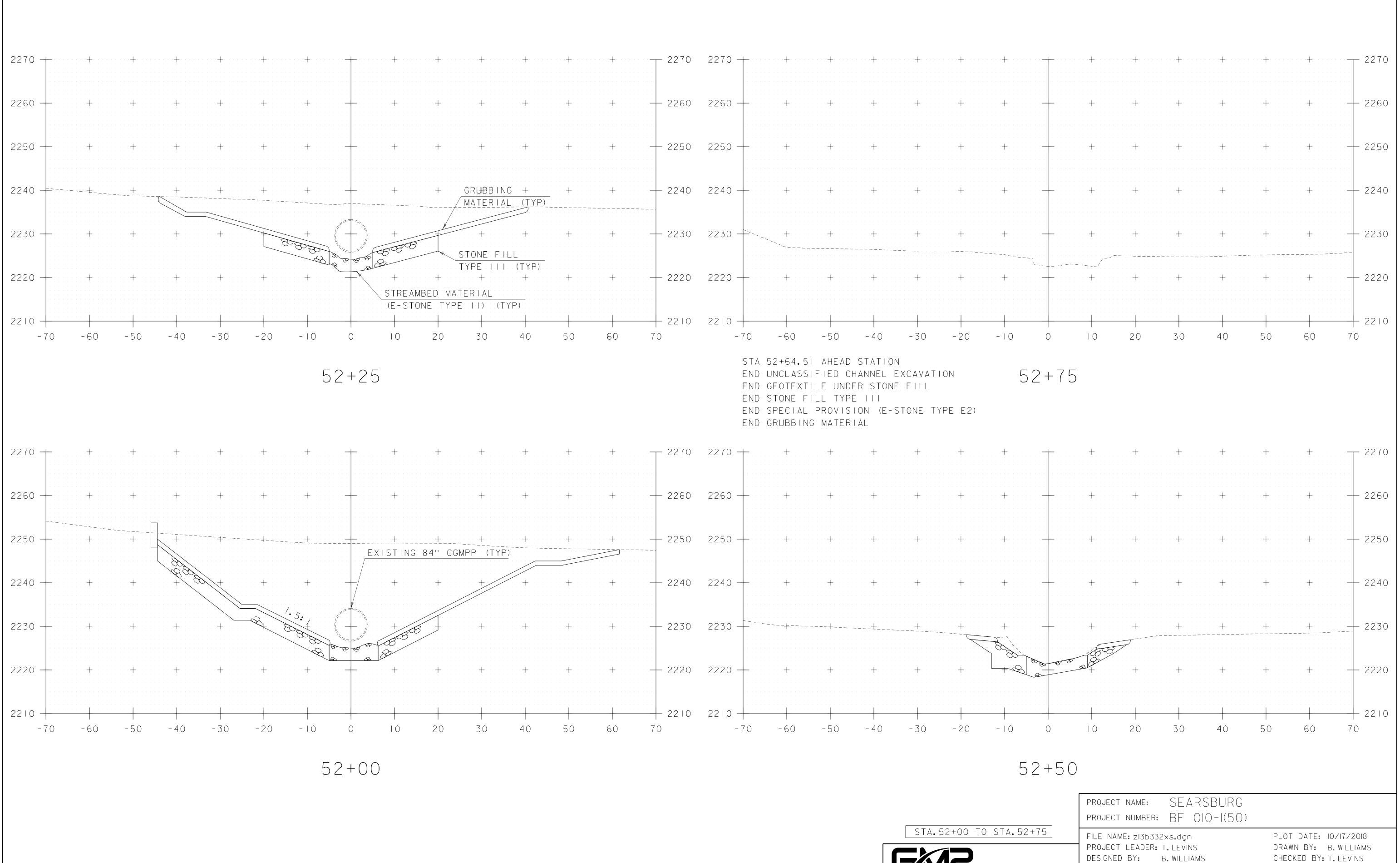


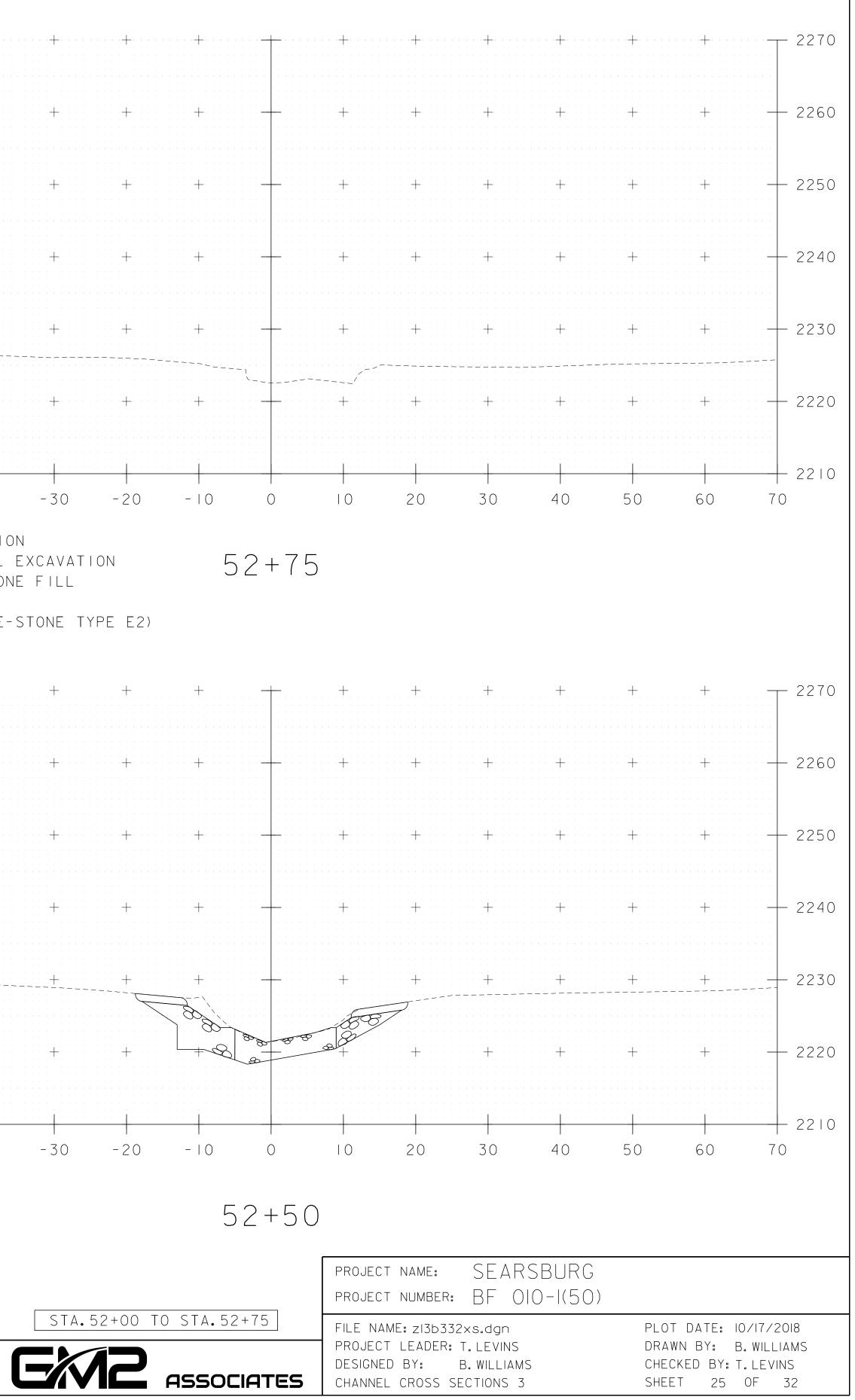


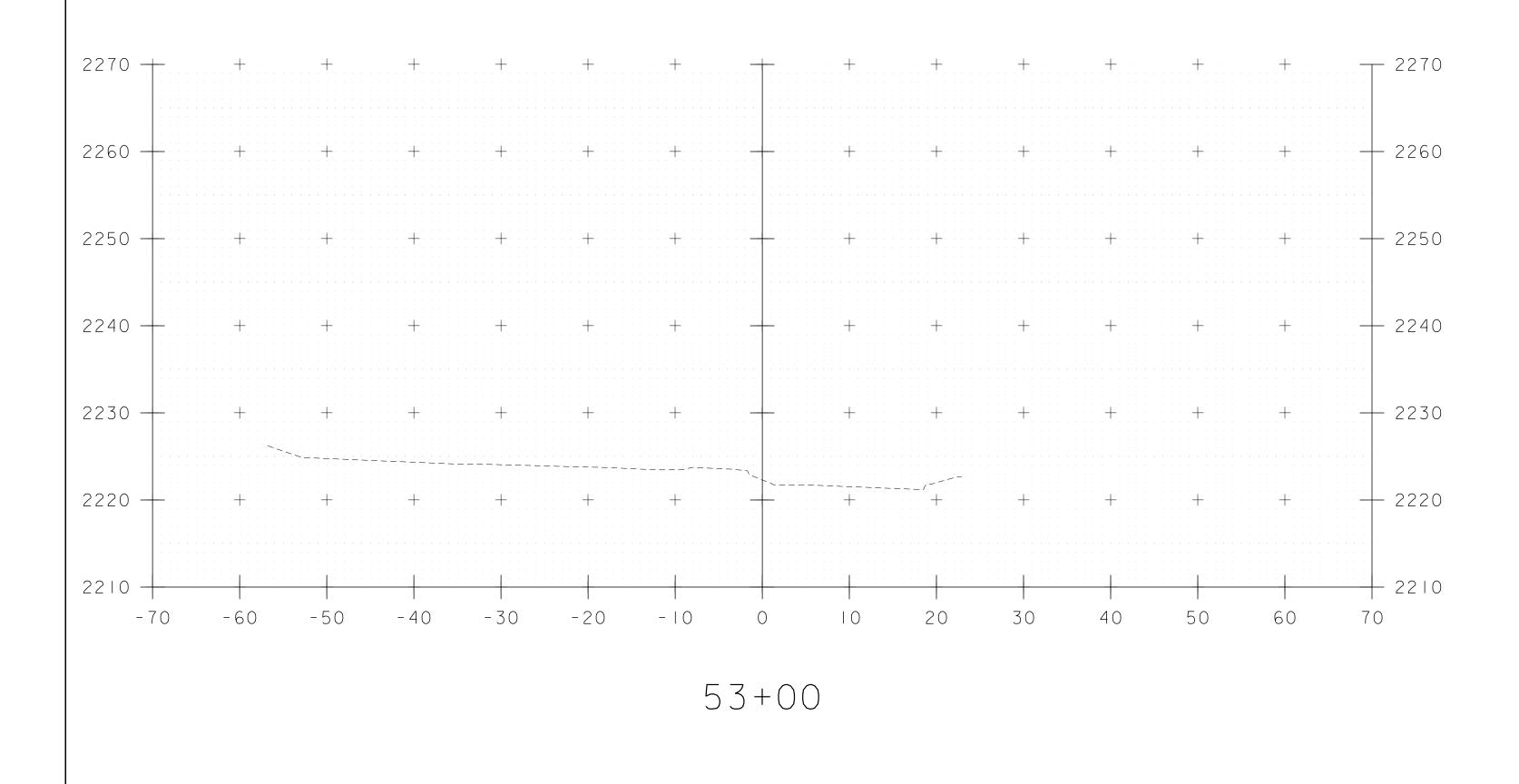


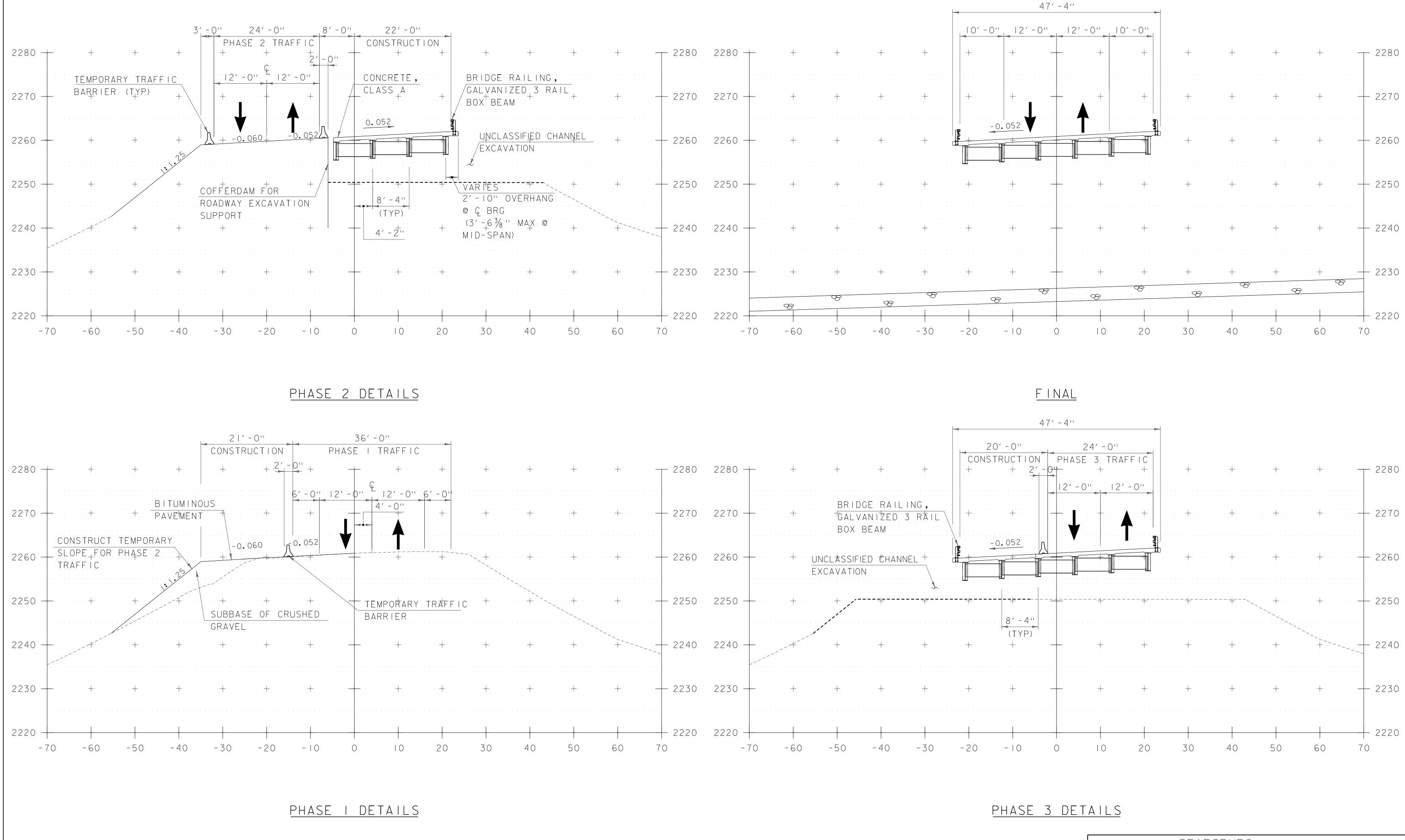





STA 50+61.06 BACK STATION BEGIN UNCLASSIFIED CHANNEL EXCAVATION


> DESIGNED BY: B. WILLIAMS CHANNEL CROSS SECTIONS I


DRAWN BY: B. WILLIAMS CHECKED BY: T.LEVINS SHEET 23 OF 32



	project name: SEARSBURG	
	project number: BF 010-1(50)	
53+00	FILE NAME: zI3b332xs.dgn	PLOT DATE: 10/17/2018
	PROJECT LEADER: T.LEVINS	DRAWN BY: B.WILLIAMS
	DESIGNED BY: B. WILLIAMS	CHECKED BY: T.LEVINS
CIATES	CHANNEL CROSS SECTIONS 4	SHEET 26 OF 32

SCALE |'' = |0' - 0''

	project name: SEARSBURG
	project number: $BF O O-1(50)$
	FILE NAME: zI3b332xs_bridge.dgn PLOT DATE: I0/I7/2018
	PROJECT LEADER: T.LEVINS DRAWN BY: T.MANNING
	DESIGNED BY: T. MANNING CHECKED BY: T. LEVINS
CIATES	VT ROUTE 9 PHASE CONSTRUCTION SECTIONS SHEET 27 OF 32

EPSC PLAN NARRATIVE

1.1 PROJECT DESCRIPTION

THIS PROJECT INVOLVES THE REPLACEMENT OF THE EXISTING BRIDGE 20. BRIDGE 20 WILL BE REPLACED WITH A SINGLE SPAN STEEL GIRDER STRUCTURE, SPANNING 103 FEET OVER UNNAMED BROOK. IT IS LOCATED IN THE TOWN OF SEARSBURG, ON VT ROUTE 9 IN A RURAL AREA, APPROXIMATELY 1.1 MILES WEST OF THE INTERSECTION OF VT ROUTE 8.

NOTE: AREA OF DISTURBANCE INCLUDES LIMITS OF EARTH DISTURBANCE WITHIN THE PROJECT AREA, AS WELL AS WASTE, BORROW AND STAGING AREAS, AND OTHER EARTH DISTURBING ACTIVITIES WITHIN OR DIRECTLY ADJACENT TO THE PROJECT LIMITS AS SHOWN ON THE ATTACHED EPSC PLAN.

TOTAL AREA OF DISTURBANCE AS SHOWN ON THE ATTACHED EPSC PLAN IS APPROXIMATELY 1.23 ACRES.

IT IS ANTICIPATED THAT THIS PROJECT WILL LAST SEVEN TO EIGHT MONTHS.

1.2 SITE INVENTORY

1.2.1 TOPOGRAPHY

THE AREA SURROUNDING THE PROJECT IS GRASS AND WOODS IN A RURAL SETTING.

1.2.2 DRAINAGE, WATERWAYS, BODIES OF WATER, AND PROXIMITY TO NATURAL OR MAN-MADE WATER FEATURES

THE UNNAMED BROOK IS THE ONLY WATER SOURCE ON THE PROJECT SITE. THE BROOK IS CLASSIFIED AS MODERATELY SLOPED, SINUOUS, NARROW, WITH A CONFINED CHANNEL AT THE SITE. THE STREAM BED CONSISTS OF GRAVEL, COBBLES AND BOULDERS. THE TRIBUTARY AREA AT THE BRIDGE CROSSING IS 0.46 SQ. MI. DUE TO THE NATURE OF THE SURROUNDING TERRAIN THE PROJECT SITE COULD RECEIVE RUNOFF WATER FROM A FEW NEARBY SLOPES.

1.2.3 VEGETATION

THE VEGETATION IN THE PROJECT AREA CONSISTS OF HARDWOOD TREES, TALL GRASS AND UNDERGROWTH. THE IMPACT TO VEGETATION WILL BE LIMITED TO THAT WHICH IS DIRECTLY AFFECTED BY REPLACEMENT OF THE EXISTING CULVERT. UPON PROJECT COMPLETION, THE CHANNEL BANKS WILL BE ARMORED WITH STONE FILL TYPE III AS SPECIFIED ON THE PLANS. DISTURBED VEGETATION WILL BE REESTABLISHED WITH STANDARD SEED AND MULCH PRACTICES.

1.2.4 SOILS

ALL SOIL DATA CAME FROM THE U.S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE FOR THE COUNTY OF BENNINGTON, VERMONT, SOILS ON THE PROJECT SITE ARE WILMINGTON-MUNDAL ASSOCIATION, UNDULATING, VERY STONY, 3% TO 8% SLOPES, "K" VALUE = 0.06 TO 0.60.THE SOIL IS CONSIDERED TO HAVE MODERATELY LOW TO MODERATELY HIGH EROSION POTENTIAL.

NOTE: "K" VALUES GENERALLY INDICATE THE FOLLOWING: 0.0-0.23 = LOW EROSION POTENTIAL 0.24-0.36 = MODERATE EROSION POTENTIAL 0.37 AND HIGHER = HIGH EROSION POTENTIAL

1.2.5 SENSITIVE RESOURCE AREAS CRITICAL HABITATS: EXTREMELY HIGH WILDLIFE HABITAT CONNECTIVITY RATINGS HISTORICAL OR ARCHEOLOGICAL AREAS: NONE PRIME AGRICULTURAL LAND: NO THREATENED AND ENDANGERED SPECIES: NORTHERN LONG-EARED BAT, POTENTIAL FOR PLANT SPECIES OF SPECIAL CONCERN IN WETLANDS. WATER RESOURCE: UNNAMED BROOK WETLANDS: A LARGE CLASS II WETLAND COMPLEX ON SOUTH SIDE OF VT9. WETLANDS ALSO PRESENT DOWNSTREAM OF EXISTING STRUCTURE.

1.3 RISK EVALUATION

THIS PROJECT FALLS UNDER THE JURISDICTION OF GENERAL PERMIT 3-9020 FOR STORMWATER RUNOFF FROM CONSTRUCTION SITES FOR LOW RISK PROJECTS. ANY MODIFICATIONS TO THE PROJECT THAT INCREASE THE RISK TO ENVIRONMENTAL RESOURCES SHALL BE EVALUATED IN ACCORDANCE WITH THE PERMIT REQUIREMENTS. THE CONTRACTOR WILL BE RESPONSIBLE FOR ANY ADDITIONAL PERMITTING.

1.4 EROSION PREVENTION AND SEDIMENT CONTROL

THE EROSION CONTROL PLANS ARE MEANT AS A GUIDELINE FOR PREVENTING EROSION AND CONTROLLING SEDIMENT TRANSPORT. THE PRINCIPLES OUTLINED IN THIS NARRATIVE CONSIST OF APPLYING MEASURES THROUGHOUT CONSTRUCTION OF THE PROJECT IN ORDER TO MINIMIZE SEDIMENT TRANSPORT TO THE RECEIVING WATERS. THE MEASURES INCLUDE STABILIZATION AND STRUCTURAL PRACTICES, STORMWATER CONTROLS AND OTHER POLLUTION PREVENTION PRACTICES. THEY HAVE BEEN PROPOSED BY THE DESIGNER AS A BASIS FOR PROTECTING RESOURCES AND WILL NEED TO BE BUILT UPON BASED ON THE SPECIFIC MEANS AND METHODS OF THE CONTRACTOR. REFER TO THE LOW RISK SITE HANDBOOK AND APPROPRIATE DETAIL SHEETS FOR SPECIFIC GUIDANCE AND CONSTRUCTION DETAILING.

ALL MEASURES SHALL BE REGULARLY MAINTAINED AND SHALL BE CHECKED FOR SEDIMENT BUILD-UP. SEDIMENT SHALL BE DISPOSED OF AT AN APPROVED SITE WHERE IT WILL NOT BE SUBJECT TO EROSION.

1.4.1 MARK SITE BOUNDARIES

SITE BOUNDARIES AND AREAS THAT CONSTRUCTION EQUIPMENT CAN ACCESS SHALL BE DELINEATED.

PROJECT DEMARCATION FENCE (PDF) SHALL BE USED TO PHYSICALLY MARK SITE BOUNDARIES.

1.4.2 LIMIT DISTURBANCE AREA

PREVENTING INITIAL SOIL EROSION BY MINIMIZING THE EXPOSED AREA IS MUCH MORE EFFECTIVE THAN TREATING ERODED SEDIMENT. EARTH DISTURBANCE CAN BE MINIMIZED THROUGH CONSTRUCTION PHASING BY ONLY OPENING UP EARTH AS NECESSARY. THIS CAN LIMIT THE AREA THAT WILL BE DISTURBED AND EXPOSED TO EROSION. EMPLOY TEMPORARY CONSTRUCTION STABILIZATION PRACTICES IN INCREMENTAL STAGES AS PHASES CHANGE. FOR PROJECTS WHICH FALL UNDER THE CONSTRUCTION GENERAL PERMIT, ONLY THE ACREAGE LISTED ON THE PERMIT AUTHORIZATION MAY BE EXPOSED AT ANY GIVEN TIME.

MAINTAINING VEGETATED BUFFERS ALONG STREAM BANKS, WETLANDS OR OTHER SENSITIVE AREAS IS A CRUCIAL EROSION AND SEDIMENT CONTROL MEASURE THAT SHOULD BE ESTABLISHED WHEREVER POSSIBLE.

1.4.3 SITE ENTRANCE/EXIT STABILIZATION

TRACKING OF SEDIMENT ONTO PUBLIC HIGHWAYS SHALL BE MINIMIZED TO REDUCE THE POTENTIAL FOR RUNOFF ENTERING RECEIVING WATERS. INSTALLATION SHALL COINCIDE WITH THE CONTRACTORS PROGRESS SCHEDULE.

STABILIZED CONSTRUCTION ENTRANCES SHALL BE INSTALLED AS PROPOSED ON THE EPSC PLAN AND ANYWHERE EQUIPMENT WILL BE GOING FROM AREAS OF EXPOSED SOILS TO PAVED SURFACES.

1.4.4 INSTALL SEDIMENT BARRIERS

SEDIMENT BARRIERS SHALL BE UTILIZED TO INTERCEPT RUNOFF AND ALLOW SUSPENDED SEDIMENT TO SETTLE OUT. THEY SHALL BE INSTALLED PRIOR TO ANY UP SLOPE WORK.

GEOTEXTILE FOR SILT FENCE SHALL BE INSTALLED AS PROPOSED ON THE EPSC PLAN. FILTER CURTAINS SHALL BE INSTALLED ON THE INLET AND OUTLET ENDS OF THE CHANNEL RECONSTRUCTION AS PROPOSED ON THE EPSC PLAN.

1.4.5 DIVERT UPLAND RUNOFF

DIVERSIONARY MEASURES SHALL BE USED TO INTERCEPT RUNOFF FROM ABOVE THE CONSTRUCTION AND DIRECT IT AROUND THE DISTURBED AREA SO THAT CLEAN WATER DOES NOT BECOME MUDDIED WHILE TRAVELING OVER EXPOSED SOILS ON THE CONSTRUCTION SITE.

THE PROJECT AREA IS RELATIVELY FLAT. THEREFORE, IT IS NOT ANTICIPATED THAT DIVERSION MEASURES WILL BE NECESSARY.

1.4.6 SLOW DOWN CHANNELIZED RUNOFF

CHECK STRUCTURES SHALL BE UTILIZED TO REDUCE THE VELOCITY, AND THUS THE EROSIVE POTENTIAL, OF CONCENTRATED FLOW IN CHANNELS.

NONE ANTICIPATED.

1.4.7 CONSTRUCT PERMANENT CONTROLS PERMANENT STORMWATER TREATMENT DEVICES SHALL BE INSTALLED AS SHOWN ON THE PLANS AND IN ACCORDANCE WITHN PERMIT CONDITIONS.

NONE ANTICIPATED.

1.4.8 STABILIZE EXPOSED SOILS DURING CONSTRUCTION

ALL AREAS OF DISTURBANCE MUST HAVE TEMPORARY STABILIZATION IN PLACE WITHIN 48 HOURS OF DISTURBANCE OR IN ACCORDANCE WITH THE CONSTRUCTION GENERAL PERMIT 3-9020 AUTHORIZATION.

SURFACE ROUGHENING OF ALL EXPOSED SLOPES, COMBINED WITH TEMPORARY MULCHING, SHALL BE UTILIZED ON A REGULAR BASIS. BIODEGRADABLE EROSION CONTROL MATTING OR AN EOUIVALENT SHALL BE USED TO STABILIZE ALL SLOPES STEEPER THAN 1:3.

THE FORECAST OF RAINFALL EVENTS SHALL TRIGGER IMMEDIATE PROTECTION OF EXPOSED SOILS.

1.4.9 WINTER STABILIZATION

VARIOUS MEASURES SPECIFIC TO WINTER MAY BE NECESSARY SHOULD THE PROJECT EXTEND INTO WINTER (OCTOBER 15 THROUGH APRIL 15). REFER TO THE LOW RISK SITE HANDBOOK FOR GUIDANCE.

NONE ANTICIPATED.

1.4.10 STABILIZE SOIL AT FINAL GRADE

EXPOSED SOIL MUST BE STABILIZED WITHIN 48 HOURS OF REACHING FINAL GRADE.

SEED, MULCH, FERTILIZER AND LIME SHALL BE USED TO ESTABLISH PERMANENT VEGETATION. FOR SLOPES STEEPER THAN 1:3, BIODEGRADABLE EROSION CONTROL MATTING OR AN EQUIVALENT SHALL BE USED INSTEAD OF MULCH.

1.4.11 DE-WATERING ACTIVITIES

DISCHARGE FROM DEWATERING ACTIVITIES THAT FLOWS OFF OF THE CONSTRUCTION SITE MUST NOT CAUSE OR CONTRIBUTE TO A VIOLATION OF THE VERMONT WATER QUALITY STANDARDS.

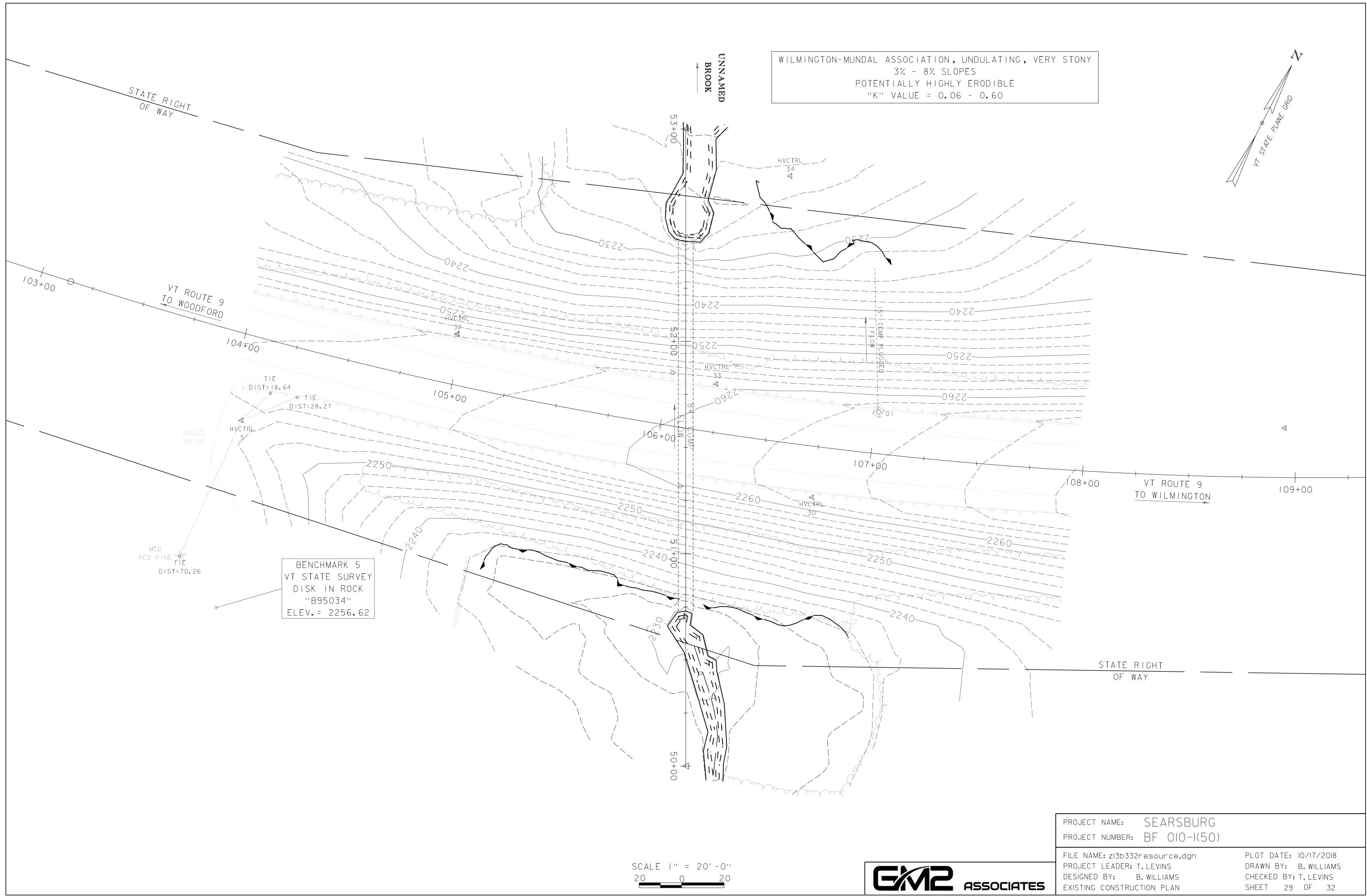
FILTER BAG(S) SHALL BE USED FOR DEWATERING.

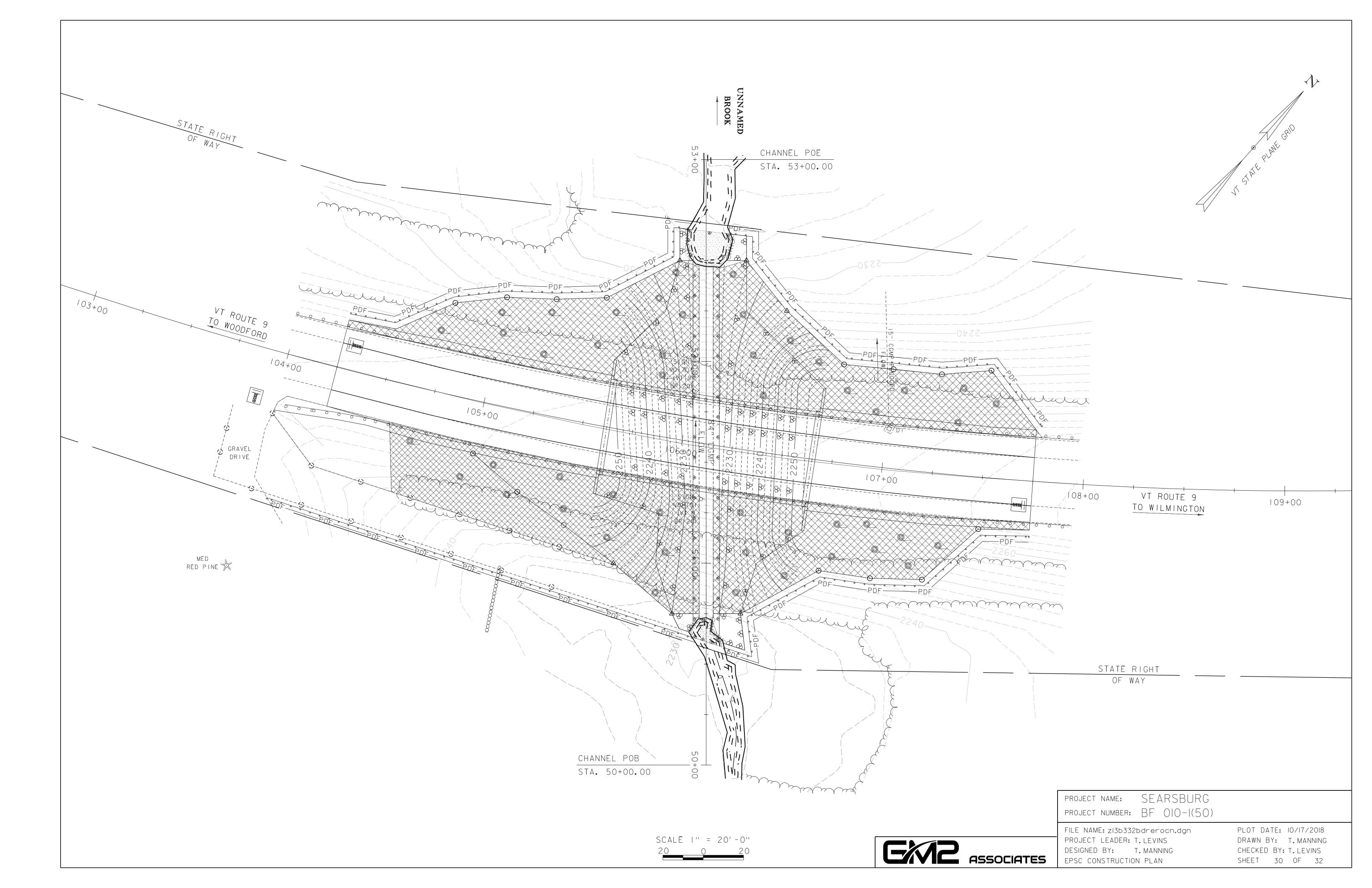
1.4.12 INSPECT YOUR SITE

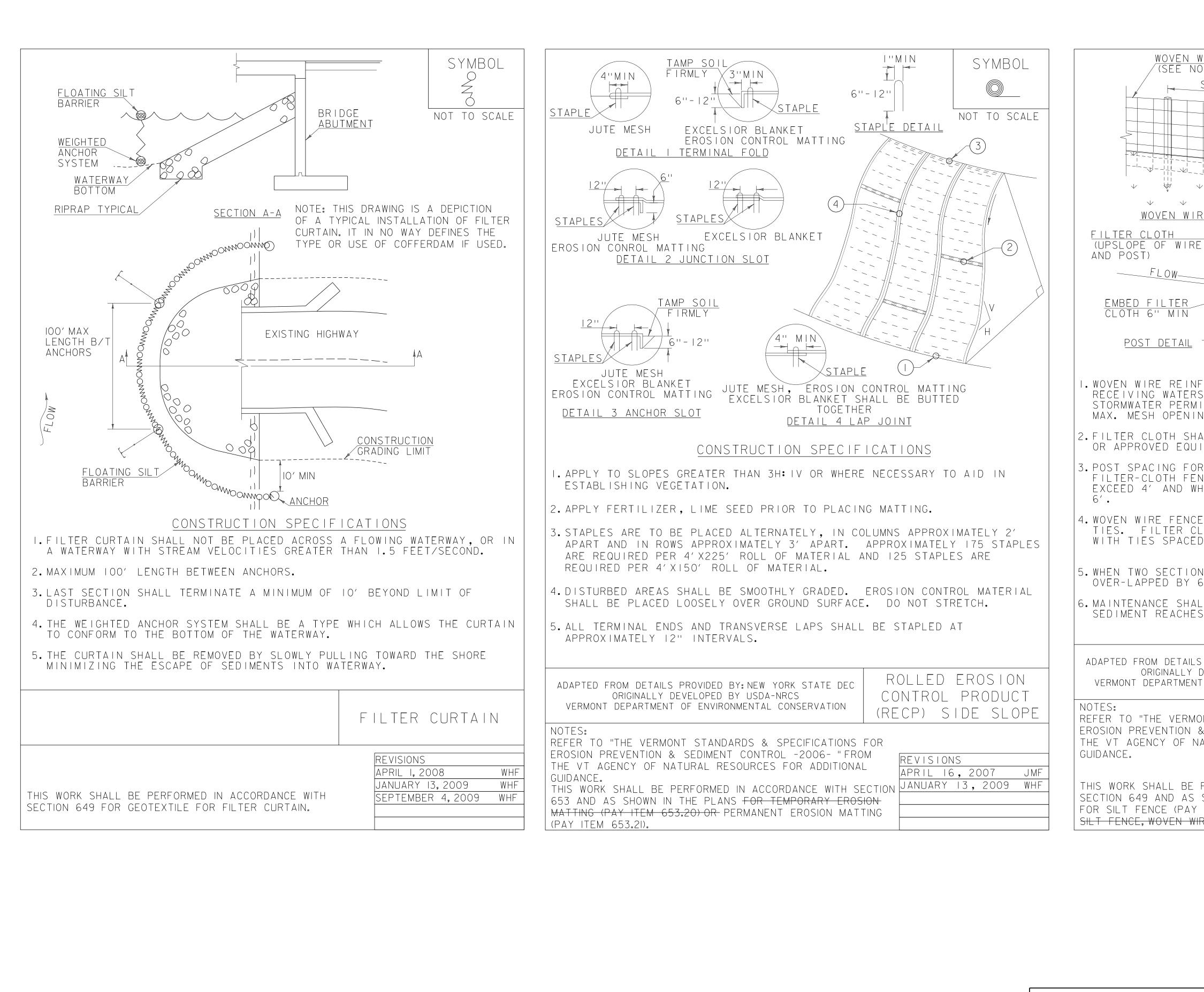
INSPECT THE PROJECT SITE BASED ON SPECIAL PROVISION REQUIREMENTS OR CONSTRUCTION GENERAL PERMIT AUTHORIZATION STIPULATIONS.

1.5 SEQUENCE AND STAGING

THIS SECTION WILL BE DEVELOPED BY THE CONTRACTOR USING THE GUIDANCE OUTLINED IN THE VTRANS EPSC PLAN CONTRACTOR CHECKLIST.


1.5.1 CONSTRUCTION SEQUENCE

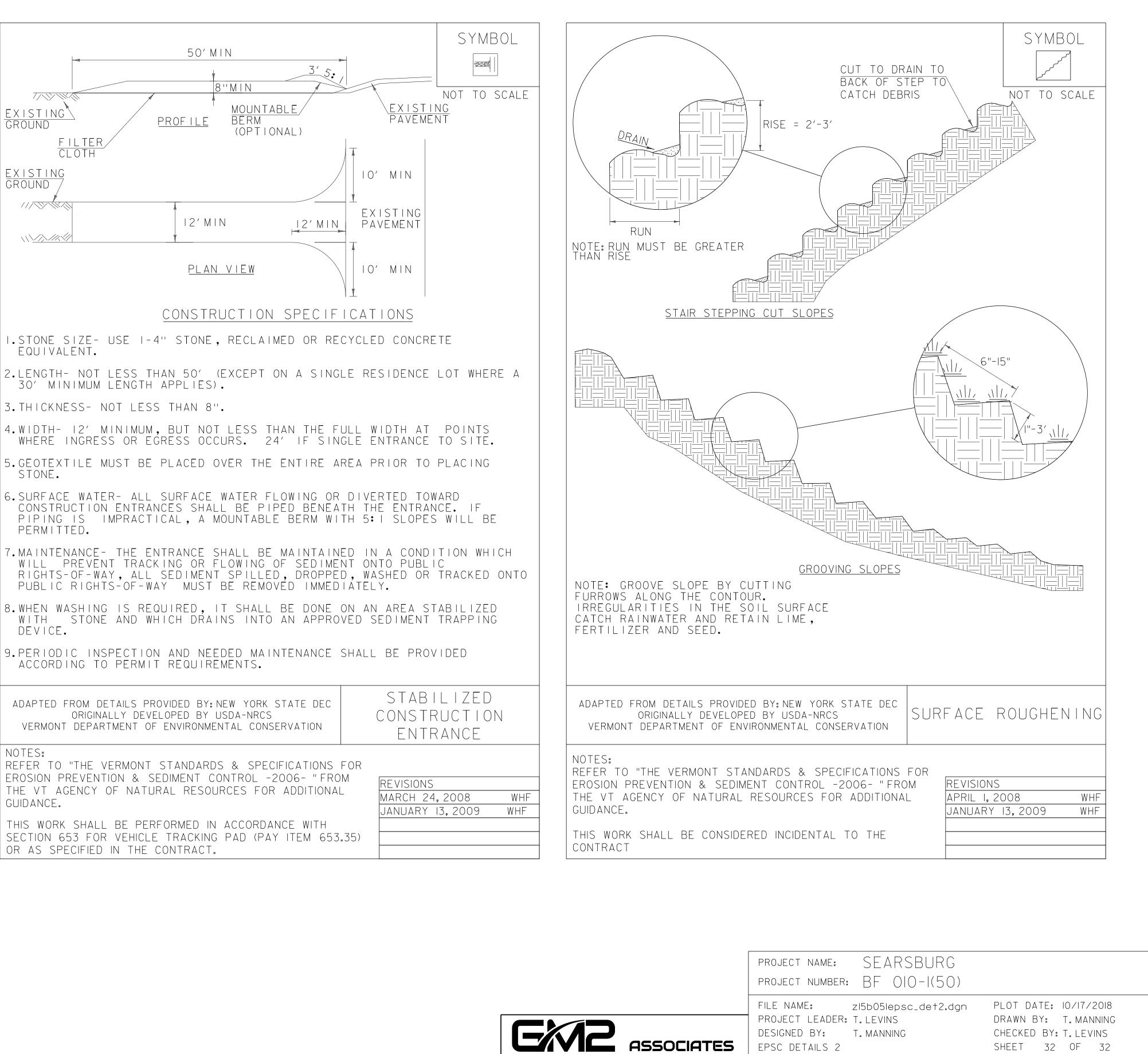

1.5.2 OFF-SITE ACTIVITIES



IN ADDITION TO THE CONTRACTOR CHECKLIST ANY ACTIVITIES OUTSIDE THE CONSTRUCTION LIMITS SHALL FOLLOW SUBSECTIONS 105.25- 105.29 OF THE STANDARD SPECIFICATIONS FOR CONSTRUCTION.

	project name: SEARSBURG	
	project number: BF 010-1(50)	
		PLOT DATE: 10/17/2018
	PROJECT LEADER: T.LEVINS	DRAWN BY: T.MANNING
	DESIGNED BY: T. MANNING	CHECKED BY: T.LEVINS
ATES	EPSC NARRATIVE	SHEET 28 OF 32

DESIGNED BY: T. MANNING


EPSC DETAILS I

CHECKED BY: T.LEVINS

SHEET 31 OF 32

VIRE_FENCE			SYMBC	
)TE #1) <u>SEE NOTE #3 FOR POS</u>	T SPACING		SILT FEN	
			SILT FEN WOVEN WI NOT TO SC	RE Cale
			FILTER CL I6'' MIN _ EMBED 6''M -	
FLOW	FLOW-			
CONSTRUCTION	SPECIFICAT	IONS		
FORCED FENCE IS REG 5 WHEN THE PROJECT F IT. WOVEN WIRE SHAL NG.	ALLS UNDER A	CONSTRUC	TION	
ALL BE EITHER FILTER IVALENT.	X, MIRAFIIO	DX, STABI	LINKA TI4	ON
R WIRE-BACKED FENCE NCE, WHEN ELONGATION HEN ELONGATION IS <5	S >50%, PO\$	ST SPACIN	IG SHALL N	
E IS TO BE FASTENED OTH IS TO BE FASTEN DEVERY 24'' AT TOP A	IED SECURELY	TO WOVEN		
NS OF FILTER CLOTH A S'' AND FOLDED.	DJOIN EACH O	THER THEY	SHALL BE	
L BE PERFORMED AS N S half of fabric hei	IEEDED AND MA Ght.	terial re	MOVED WHE	N
PROVIDED BY: NEW YORK S DEVELOPED BY USDA-NRCS OF ENVIRONMENTAL CONSE		SILT	FENCE	
ONT STANDARDS & SPECI & SEDIMENT CONTROL -2 ATURAL RESOURCES FOR	006- "FROM			
PERFORMED IN ACCORDAN Shown in the plans fo item 649.51). OR geotex re reinforced (pay ite)	OR GEOTEXTILE (TILE FOR	REVISIONS MARCH 21, DECEMBER JANUARY	II, 2008	WHF WHF WHF
PROJECT NAM	e: SEARSB	URG		
PROJECT NUM				
FILE NAME: Project lead	zl5b05lepsc_c DER: T.IFVINS	detl.dgn	PLOT DATE: Drawn by:	

			VAOT LOW GROW/F			
		/AC				
		HYDROSEED				PURIT
38%	57		CREEPING RED FESCUE	FESTUCA RUBRA VAR. RUBRA	90%	98
29%	43.5			FESTUCA LONGIFOLIA	85%	95
15%	22.5		CHEWINGS FESCUE	FESTUCA RUBRA VAR. COMMUTATA	0 , /0	95
15%	22.5		ANNUAL RYEGRASS		90%	95
3%	4.5		INERTS			
100%	150	250				
			VAOT RURAL	ΔRFΔ MIX		
	LBS	/AC				
WEIGHT	ROADCAST	HYDROSEED	NAME	LATIN NAME	GERM	PURIT
37.5%	22.5		CREEPING RED FESCUE	FESTUCA RUBRA VAR. RUBRA	85%	98
37.5%	22.5		TALL FESCUE	FESTUCA ARUNDINACEA	90%	95
5.0%	3		RED TOP	AGROSTIS GIGANTEA	90%	95
15.0%	9	_	WHITE FIELD CLOVER	TRIFOLIUM REPENS	85%	95
	3		ANNUAL RYE GRASS		85%	90
5.0% 100%	<u> </u>	6 120	ANNUAL RIE UKASS		03%	70
			10/20/10 AG LIME 500 LBS/AC 2 TONS/A			
			CONSTRUCTION	I GUIDANCE		
				DINATE WITH THE RESIDEN		
		ie contra Id MIX To		UTINATE WITH THE RESIDEN		NLĽŃ
				LANS AND/OR FOR ALL EST	ABLISH	ЕD
UPLAN	ND (NON	WEILAND)	AREAS DISIURBE	D BY THE CONTRACTOR.		
		TURFS: S	HALL NOT HAVE A	WEED CONTENT EXCEEDING		
3 411 9	SEED MIX				0.40°	RΥ
			FREE UF ALL NUA	IOUS SEED.	0.40%	ΒY
WEIGH	IT AND S	HALL BE				
WEIGH 4.ferti	ht and s Ilizer a	HALL BE	TONE: SHALL FOL	IOUS SEED. Low rates shown on plan		
WEIGH 4.ferti	ht and s Ilizer a	HALL BE	TONE: SHALL FOL			
WEIGH 4.FERTI DIREC	HT AND S ILIZER A CTED BY	HALL BE ND LIMES THE ENGI	TONE: SHALL FOL Neer.		OR AS	
WEIGH 4.ferti Direc 5.hay M	HT AND S Ilizer A Cted by Mulch: T	HALL BE ND LIMES The engi o be pla	TONE: SHALL FOL Neer. Ced on earth sl	LOW RATES SHOWN ON PLAN	OR AS	
WEIGH 4.FERTI DIREC 5.HAY M ACHIE	HT AND S ILIZER A CTED BY MULCH: T EVE 90%	HALL BE ND LIMES THE ENGI O BE PLA GROUND C	TONE: SHALL FOL NEER. CED ON EARTH SL OVER OR AS DIRE	LOW RATES SHOWN ON PLAN OPES AT THE RATE OF 2 T CTED BY THE ENGINEER.	OR AS ONS/AC	RE,
WEIGH 4.FERTI DIREC 5.HAY M ACHIE 6.HYDRC AND T	HT AND S ILIZER A CTED BY AULCH: T EVE 90% OSEEDING THE TYPE	HALL BE ND LIMES THE ENGI O BE PLA GROUND C C ALTHOU OF HYDR	TONE: SHALL FOL NEER. CED ON EARTH SL OVER OR AS DIRE GH GUIDANCE IS OSEED PROPOSED	LOW RATES SHOWN ON PLAN OPES AT THE RATE OF 2 T	OR AS ONS/AC	RE, NS
WEIGH 4.FERTI DIREC 5.HAY M ACHIE 6.HYDRC AND T THE A	HT AND S ILIZER A CTED BY MULCH: T EVE 90% OSEEDING THE TYPE AMOUNTS	HALL BE ND LIMES THE ENGI O BE PLA GROUND C C C ALTHOU OF HYDR AND TYPE	TONE: SHALL FOL NEER. CED ON EARTH SL OVER OR AS DIRE GH GUIDANCE IS OSEED PROPOSED S OF SOIL AMEND	LOW RATES SHOWN ON PLAN OPES AT THE RATE OF 2 T CTED BY THE ENGINEER. GIVEN ABOVE THE SITE CO FOR USE WILL ULTIMATELY MENTS TO BE APPLIED.	OR AS ONS/AC NDITIO DICTA	RE, NS TE
WEIGH 4.FERTI DIREC 5.HAY M ACHIE 6.HYDRC AND T THE A 7.TURF	HT AND S ILIZER A CTED BY AULCH: T EVE 90% OSEEDING THE TYPE AMOUNTS ESTABLI	HALL BE ND LIMES THE ENGI O BE PLA GROUND C C C ALTHOU OF HYDR AND TYPE SHMENT:	TONE: SHALL FOL NEER. CED ON EARTH SL OVER OR AS DIRE GH GUIDANCE IS OSEED PROPOSED S OF SOIL AMEND PLACING SEED, F	LOW RATES SHOWN ON PLAN OPES AT THE RATE OF 2 T CTED BY THE ENGINEER. GIVEN ABOVE THE SITE CO FOR USE WILL ULTIMATELY MENTS TO BE APPLIED. ERTILIZER, LIME AND MUL	OR AS ONS/AC NDITIO DICTA CH PRI	RE, NS TE
WEIGH 4.FERTI DIREC 5.HAY M ACHIE 6.HYDRC AND T THE A 7.TURF TO SE	HT AND S ILIZER A CTED BY AULCH: T EVE 90% OSEEDING THE TYPE AMOUNTS ESTABLI	HALL BE ND LIMES THE ENGI O BE PLA GROUND C C C ALTHOU OF HYDR AND TYPE SHMENT: SHMENT:	TONE: SHALL FOL NEER. CED ON EARTH SL OVER OR AS DIRE GH GUIDANCE IS OSEED PROPOSED S OF SOIL AMEND PLACING SEED, F	LOW RATES SHOWN ON PLAN OPES AT THE RATE OF 2 T CTED BY THE ENGINEER. GIVEN ABOVE THE SITE CO FOR USE WILL ULTIMATELY MENTS TO BE APPLIED.	OR AS ONS/AC NDITIO DICTA CH PRI	RE, NS TE
WEIGH 4.FERTI DIREC 5.HAY M ACHIE 6.HYDRC AND T THE A 7.TURF TO SE	IT AND S ILIZER A CTED BY AULCH: T IVE 90% OSEEDING THE TYPE AMOUNTS ESTABLI EPTEMBER	HALL BE ND LIMES THE ENGI O BE PLA GROUND C C C ALTHOU OF HYDR AND TYPE SHMENT: SHMENT:	TONE: SHALL FOL NEER. CED ON EARTH SL OVER OR AS DIRE GH GUIDANCE IS OSEED PROPOSED S OF SOIL AMEND PLACING SEED, F	LOW RATES SHOWN ON PLAN OPES AT THE RATE OF 2 T CTED BY THE ENGINEER. GIVEN ABOVE THE SITE CO FOR USE WILL ULTIMATELY MENTS TO BE APPLIED. ERTILIZER, LIME AND MUL	OR AS ONS/AC NDITIO DICTA CH PRI	RE, NS TE
WEIGH 4.FERTI DIREC 5.HAY M ACHIE 6.HYDRC AND T THE A 7.TURF TO SE	IT AND S ILIZER A CTED BY AULCH: T IVE 90% OSEEDING THE TYPE AMOUNTS ESTABLI EPTEMBER	HALL BE ND LIMES THE ENGI O BE PLA GROUND C C C ALTHOU OF HYDR AND TYPE SHMENT: SHMENT:	TONE: SHALL FOL NEER. CED ON EARTH SL OVER OR AS DIRE GH GUIDANCE IS OSEED PROPOSED S OF SOIL AMEND PLACING SEED, F	LOW RATES SHOWN ON PLAN OPES AT THE RATE OF 2 T CTED BY THE ENGINEER. GIVEN ABOVE THE SITE CO FOR USE WILL ULTIMATELY MENTS TO BE APPLIED. ERTILIZER, LIME AND MUL	OR AS ONS/AC NDITIO DICTA CH PRI	RE, NS TE
WEIGH 4.FERTI DIREC 5.HAY M ACHIE 6.HYDRC AND T THE A 7.TURF TO SE	IT AND S ILIZER A CTED BY AULCH: T IVE 90% OSEEDING THE TYPE AMOUNTS ESTABLI EPTEMBER	HALL BE ND LIMES THE ENGI O BE PLA GROUND C C C ALTHOU OF HYDR AND TYPE SHMENT: SHMENT:	TONE: SHALL FOL NEER. CED ON EARTH SL OVER OR AS DIRE GH GUIDANCE IS OSEED PROPOSED S OF SOIL AMEND PLACING SEED, F	LOW RATES SHOWN ON PLAN OPES AT THE RATE OF 2 T CTED BY THE ENGINEER. GIVEN ABOVE THE SITE CO FOR USE WILL ULTIMATELY MENTS TO BE APPLIED. ERTILIZER, LIME AND MUL	OR AS ONS/AC NDITIO DICTA CH PRI	RE, NS TE
WEIGH 4.FERTI DIREC 5.HAY M ACHIE 6.HYDRC AND T THE A 7.TURF TO SE GROWT ADAPTED	T AND S LLIZER A CTED BY AULCH: T EVE 90% OSEEDING THE TYPE AMOUNTS ESTABLI PTEMBER TH OF GR	HALL BE ND LIMES THE ENGI O BE PLA GROUND C C C ALTHOU OF HYDR AND TYPE SHMENT: C IS AND CASS. RANS TECHN	TONE: SHALL FOL NEER. CED ON EARTH SL OVER OR AS DIRE GH GUIDANCE IS OSEED PROPOSED S OF SOIL AMEND PLACING SEED, F AFTER APRIL IS	UAL FOR	OR AS	RE, NS TE OR
WEIGH 4.FERTI DIREC 5.HAY M ACHIE 6.HYDRC AND T THE A 7.TURF TO SE GROWT ADAPTED	T AND S LLIZER A CTED BY AULCH: T EVE 90% OSEEDING THE TYPE AMOUNTS ESTABLI PTEMBER TH OF GR	HALL BE ND LIMES THE ENGI O BE PLA GROUND C C C ALTHOU OF HYDR AND TYPE SHMENT: C IS AND CASS. RANS TECHN	TONE: SHALL FOL NEER. CED ON EARTH SL OVER OR AS DIRE GH GUIDANCE IS OSEED PROPOSED S OF SOIL AMEND PLACING SEED, F AFTER APRIL IS	UAL FOR	OR AS	RE, NS TE OR
WEIGH 4.FERTI DIREC 5.HAY M ACHIE 6.HYDRC AND T THE A 7.TURF TO SE GROWT	IT AND S ILIZER A CTED BY AULCH: T EVE 90% OSEEDING THE TYPE AMOUNTS ESTABLI EPTEMBER TH OF GR	HALL BE ND LIMES THE ENGI O BE PLA GROUND C C AND TYPE SHMENT: SHMENT: SHMENT: AND TYPE AND TYPE AND TYPE	TONE: SHALL FOL NEER. CED ON EARTH SL OVER OR AS DIRE GH GUIDANCE IS OSEED PROPOSED S OF SOIL AMEND PLACING SEED, F AFTER APRIL IS	LOW RATES SHOWN ON PLAN OPES AT THE RATE OF 2 T CTED BY THE ENGINEER. GIVEN ABOVE THE SITE CO FOR USE WILL ULTIMATELY MENTS TO BE APPLIED. ERTILIZER, LIME AND MUL CAN BETTER ENSURE A VIG	OR AS	RE, NS TE OR
WEIGH 4.FERTI DIREC 5.HAY M ACHIE 6.HYDRC AND T THE A 7.TURF TO SE GROWT ADAPTED	IT AND S ILIZER A CTED BY AULCH: T EVE 90% OSEEDING THE TYPE AMOUNTS ESTABLI PTEMBER TH OF GR FROM VT ROADWAYS RK SHALL	HALL BE ND LIMES THE ENGI O BE PLA GROUND C C AND TYPE SHMENT: SHMENT: SHMENT: AND TYPE AND TYPE AND TYPE	TONE: SHALL FOL NEER. CED ON EARTH SL OVER OR AS DIRE GH GUIDANCE IS OSEED PROPOSED S OF SOIL AMEND PLACING SEED, F AFTER APRIL IS	LOW RATES SHOWN ON PLAN OPES AT THE RATE OF 2 T CTED BY THE ENGINEER. GIVEN ABOVE THE SITE CO FOR USE WILL ULTIMATELY MENTS TO BE APPLIED. ERTILIZER, LIME AND MUL CAN BETTER ENSURE A VIG	OR AS	RE, NS TE OR
WEIGH 4.FERTI DIREC 5.HAY M ACHIE 6.HYDRC AND T THE A 7.TURF TO SE GROWT ADAPTED	IT AND S ILIZER A CTED BY AULCH: T EVE 90% OSEEDING THE TYPE AMOUNTS ESTABLI PTEMBER TH OF GR FROM VT ROADWAYS RK SHALL	HALL BE ND LIMES THE ENGI O BE PLA GROUND C C C ALTHOU OF HYDR AND TYPE SHMENT: SHMENT: C IS AND CASS. RANS TECHN AND TRANS BE PERFORM	TONE: SHALL FOL NEER. CED ON EARTH SL OVER OR AS DIRE GH GUIDANCE IS OSEED PROPOSED S OF SOIL AMEND PLACING SEED, F AFTER APRIL IS	LOW RATES SHOWN ON PLAN OPES AT THE RATE OF 2 T CTED BY THE ENGINEER. GIVEN ABOVE THE SITE CO FOR USE WILL ULTIMATELY MENTS TO BE APPLIED. ERTILIZER, LIME AND MUL CAN BETTER ENSURE A VIG	OR AS	RE, NS TE OR IENT
WEIGH 4.FERTI DIREC 5.HAY M ACHIE 6.HYDRC AND T THE A 7.TURF TO SE GROWT ADAPTED	IT AND S ILIZER A CTED BY AULCH: T EVE 90% OSEEDING THE TYPE AMOUNTS ESTABLI PTEMBER TH OF GR FROM VT ROADWAYS RK SHALL	HALL BE ND LIMES THE ENGI O BE PLA GROUND C C C ALTHOU OF HYDR AND TYPE SHMENT: SHMENT: C IS AND CASS. RANS TECHN AND TRANS BE PERFORM	TONE: SHALL FOL NEER. CED ON EARTH SL OVER OR AS DIRE GH GUIDANCE IS OSEED PROPOSED S OF SOIL AMEND PLACING SEED, F AFTER APRIL IS	LOW RATES SHOWN ON PLAN OPES AT THE RATE OF 2 T CTED BY THE ENGINEER. GIVEN ABOVE THE SITE CO FOR USE WILL ULTIMATELY MENTS TO BE APPLIED. ERTILIZER, LIME AND MUL CAN BETTER ENSURE A VIG	OR AS	RE, NS TE OR IENT
WEIGH 4.FERTI DIREC 5.HAY M ACHIE 6.HYDRC AND T THE A 7.TURF TO SE GROWT ADAPTED	IT AND S ILIZER A CTED BY AULCH: T EVE 90% OSEEDING THE TYPE AMOUNTS ESTABLI PTEMBER TH OF GR FROM VT ROADWAYS RK SHALL	HALL BE ND LIMES THE ENGI O BE PLA GROUND C C C ALTHOU OF HYDR AND TYPE SHMENT: SHMENT: C IS AND CASS. RANS TECHN AND TRANS BE PERFORM	TONE: SHALL FOL NEER. CED ON EARTH SL OVER OR AS DIRE GH GUIDANCE IS OSEED PROPOSED S OF SOIL AMEND PLACING SEED, F AFTER APRIL IS	LOW RATES SHOWN ON PLAN OPES AT THE RATE OF 2 T CTED BY THE ENGINEER. GIVEN ABOVE THE SITE CO FOR USE WILL ULTIMATELY MENTS TO BE APPLIED. ERTILIZER, LIME AND MUL CAN BETTER ENSURE A VIG	OR AS	RE, NS TE OR IENT
WEIGH 4.FERTI DIREC 5.HAY M ACHIE 6.HYDRC AND T THE A 7.TURF TO SE GROWT ADAPTED	IT AND S ILIZER A CTED BY AULCH: T EVE 90% OSEEDING THE TYPE AMOUNTS ESTABLI PTEMBER TH OF GR FROM VT ROADWAYS RK SHALL	HALL BE ND LIMES THE ENGI O BE PLA GROUND C C C ALTHOU OF HYDR AND TYPE SHMENT: SHMENT: C IS AND CASS. RANS TECHN AND TRANS BE PERFORM	TONE: SHALL FOL NEER. CED ON EARTH SL OVER OR AS DIRE GH GUIDANCE IS OSEED PROPOSED S OF SOIL AMEND PLACING SEED, F AFTER APRIL IS	LOW RATES SHOWN ON PLAN OPES AT THE RATE OF 2 T CTED BY THE ENGINEER. GIVEN ABOVE THE SITE CO FOR USE WILL ULTIMATELY MENTS TO BE APPLIED. ERTILIZER, LIME AND MUL CAN BETTER ENSURE A VIG	OR AS	RE, NS TE OR IENT
WEIGH 4.FERTI DIREC 5.HAY M ACHIE 6.HYDRC AND T THE A 7.TURF TO SE GROWT ADAPTED	IT AND S ILIZER A CTED BY AULCH: T EVE 90% OSEEDING THE TYPE AMOUNTS ESTABLI PTEMBER TH OF GR FROM VT ROADWAYS RK SHALL	HALL BE ND LIMES THE ENGI O BE PLA GROUND C C C ALTHOU OF HYDR AND TYPE SHMENT: SHMENT: C IS AND CASS. RANS TECHN AND TRANS BE PERFORM	TONE: SHALL FOL NEER. CED ON EARTH SL OVER OR AS DIRE GH GUIDANCE IS OSEED PROPOSED S OF SOIL AMEND PLACING SEED, F AFTER APRIL IS	LOW RATES SHOWN ON PLAN OPES AT THE RATE OF 2 T CTED BY THE ENGINEER. GIVEN ABOVE THE SITE CO FOR USE WILL ULTIMATELY MENTS TO BE APPLIED. ERTILIZER, LIME AND MUL CAN BETTER ENSURE A VIG	OR AS	RE, NS TE OR IENT
WEIGH 4.FERTI DIREC 5.HAY M ACHIE 6.HYDRC AND T THE A 7.TURF TO SE GROWT ADAPTED	IT AND S ILIZER A CTED BY AULCH: T EVE 90% OSEEDING THE TYPE AMOUNTS ESTABLI PTEMBER TH OF GR FROM VT ROADWAYS RK SHALL	HALL BE ND LIMES THE ENGI O BE PLA GROUND C C C ALTHOU OF HYDR AND TYPE SHMENT: SHMENT: C IS AND CASS. RANS TECHN AND TRANS BE PERFORM	TONE: SHALL FOL NEER. CED ON EARTH SL OVER OR AS DIRE GH GUIDANCE IS OSEED PROPOSED S OF SOIL AMEND PLACING SEED, F AFTER APRIL IS	LOW RATES SHOWN ON PLAN OPES AT THE RATE OF 2 T CTED BY THE ENGINEER. GIVEN ABOVE THE SITE CO FOR USE WILL ULTIMATELY MENTS TO BE APPLIED. ERTILIZER, LIME AND MUL CAN BETTER ENSURE A VIG	OR AS	RE, NS TE OR IENT
WEIGH 4.FERTI DIREC 5.HAY M ACHIE 6.HYDRC AND T THE A 7.TURF TO SE GROWT ADAPTED	IT AND S ILIZER A CTED BY AULCH: T EVE 90% OSEEDING THE TYPE AMOUNTS ESTABLI PTEMBER TH OF GR FROM VT ROADWAYS RK SHALL	HALL BE ND LIMES THE ENGI O BE PLA GROUND C C C ALTHOU OF HYDR AND TYPE SHMENT: SHMENT: C IS AND CASS. RANS TECHN AND TRANS BE PERFORM	TONE: SHALL FOL NEER. CED ON EARTH SL OVER OR AS DIRE GH GUIDANCE IS OSEED PROPOSED S OF SOIL AMEND PLACING SEED, F AFTER APRIL IS	LOW RATES SHOWN ON PLAN OPES AT THE RATE OF 2 T CTED BY THE ENGINEER. GIVEN ABOVE THE SITE CO FOR USE WILL ULTIMATELY MENTS TO BE APPLIED. ERTILIZER, LIME AND MUL CAN BETTER ENSURE A VIG	OR AS	RE, NS TE OR IENT
WEIGH 4.FERTI DIREC 5.HAY M ACHIE 6.HYDRC AND T THE A 7.TURF TO SE GROWT ADAPTED	IT AND S ILIZER A CTED BY AULCH: T EVE 90% OSEEDING THE TYPE AMOUNTS ESTABLI PTEMBER TH OF GR FROM VT ROADWAYS RK SHALL	HALL BE ND LIMES THE ENGI O BE PLA GROUND C C C ALTHOU OF HYDR AND TYPE SHMENT: SHMENT: C IS AND CASS. RANS TECHN AND TRANS BE PERFORM	TONE: SHALL FOL NEER. CED ON EARTH SL OVER OR AS DIRE GH GUIDANCE IS OSEED PROPOSED S OF SOIL AMEND PLACING SEED, F AFTER APRIL IS	LOW RATES SHOWN ON PLAN OPES AT THE RATE OF 2 T CTED BY THE ENGINEER. GIVEN ABOVE THE SITE CO FOR USE WILL ULTIMATELY MENTS TO BE APPLIED. ERTILIZER, LIME AND MUL CAN BETTER ENSURE A VIG	OR AS	RE, NS TE OR IENT
WEIGH 4.FERTI DIREC 5.HAY M ACHIE 6.HYDRC AND T THE A 7.TURF TO SE GROWT ADAPTED	IT AND S ILIZER A CTED BY AULCH: T EVE 90% OSEEDING THE TYPE AMOUNTS ESTABLI PTEMBER TH OF GR FROM VT ROADWAYS RK SHALL	HALL BE ND LIMES THE ENGI O BE PLA GROUND C C C ALTHOU OF HYDR AND TYPE SHMENT: SHMENT: C IS AND CASS. RANS TECHN AND TRANS BE PERFORM	TONE: SHALL FOL NEER. CED ON EARTH SL OVER OR AS DIRE GH GUIDANCE IS OSEED PROPOSED S OF SOIL AMEND PLACING SEED, F AFTER APRIL IS	LOW RATES SHOWN ON PLAN OPES AT THE RATE OF 2 T CTED BY THE ENGINEER. GIVEN ABOVE THE SITE CO FOR USE WILL ULTIMATELY MENTS TO BE APPLIED. ERTILIZER, LIME AND MUL CAN BETTER ENSURE A VIG	OR AS	RE, NS TE OR IENT
WEIGH 4.FERTI DIREC 5.HAY M ACHIE 6.HYDRC AND T THE A 7.TURF TO SE GROWT ADAPTED	IT AND S ILIZER A CTED BY AULCH: T EVE 90% OSEEDING THE TYPE AMOUNTS ESTABLI PTEMBER TH OF GR FROM VT ROADWAYS RK SHALL	HALL BE ND LIMES THE ENGI O BE PLA GROUND C C C ALTHOU OF HYDR AND TYPE SHMENT: SHMENT: C IS AND CASS. RANS TECHN AND TRANS BE PERFORM	TONE: SHALL FOL NEER. CED ON EARTH SL OVER OR AS DIRE GH GUIDANCE IS OSEED PROPOSED S OF SOIL AMEND PLACING SEED, F AFTER APRIL IS	LOW RATES SHOWN ON PLAN OPES AT THE RATE OF 2 T CTED BY THE ENGINEER. GIVEN ABOVE THE SITE CO FOR USE WILL ULTIMATELY MENTS TO BE APPLIED. ERTILIZER, LIME AND MUL CAN BETTER ENSURE A VIG	OR AS	RE, NS TE OR IENT

